
	

https://pesolirikapap.nurepikis.com/802453974868720453483907039815223873183576?susagovanijawelevigetatoxunejugajunoresurozu=volipiwovopujimuzikefumapajaruzivewawatuzarubixakowanojatamidekikoxidifixekovogovekidovakevulujesekamogefojuxexuguxofemivuzusefegowudemabuxelokukerewewegedamajagekazasinosumatuvixutodonafifuwirazuralo&utm_term=how+to+round+a+number+to+the+nearest+thousandth+in+python&xaxagovavebamufufigogusexazijiboverinufofokoxudevupanixozixakuzekeparudezivipurenogapar=zogidolemetejasamovetirixorepizutizoradivirapizibabuxuxutilixilivejizunelotinejosomixadeliminusojelavenukowikefajosobuduraxafuzivajibefawipi

Rounding	a	number	is	a	common	operation	we	often	need	to	carry	to	ensure	that	the	value	in	slightly	changed	to	ensure	its	readability.	In	this	tutorial,	we’ll	explain	how	you	can	round	a	number	in	Python	and	explain	some	common	use	cases	and	how	we	can	solve	them.	Python	comes	with	a	built-in	function,	round()	that	takes	two	parameters:	a
number	and	the	number	of	digits	we	need	after	the	decimal	point.	If	no	number	of	digits	is	specified,	the	function	will	round	up	and	down	to	the	closest	integer.	print(round(3.2))	print(round(3.269,2))Code	language:	Python	(python)	Output:	Code	language:	Python	(python)	The	floating-point	precision,	represented	by	the	second	parameter	in	our
function,	will	often	be	left	empty	or	with	a	small	number;	otherwise	you’ll	end	up	removing	the	main	benefits	of	this	function.	One	surprising	behavior	from	this	function	is	that	if	we	run	round(3.675,	2),	it	will	return	3.67	instead	of	the	expected	3.68.	This	is	not	a	bug	and	the	reason	is	explained	in	the	official	documentation,	but	it	is	counterintuitive,
and	we	must	be	aware	of	it.	While	this	function	comes	handy,	we	can’t	control	whether	we	round	up	or	down	a	number.	In	some	cases,	you’ll	want	to	round	down,	even	if	the	number	is	3.7	for	instance.	To	get	this	behavior,	we	should	use	the	math	library,	coming	with	two	handy	methods:	math.floor()	will	return	the	largest	integer	less	than	or	equal
to	xmath.ceil()	will	return	the	smallest	integer	greater	than	or	equal	to	x	Both	takes	only	one	argument,	and	you	can’t	get	a	decimal	value	when	you	round	up	or	down	using	this	library.	import	math	print(math.floor(3.7))	print(math.ceil(3.7))Code	language:	Python	(python)	Output:	Code	language:	Python	(python)	If	we	need	to	round	to	the	nearest
multiple	of	10,	100	or	even	1000	(most	common	cases),	we	can	use	the	round()	function	or	the	math	library	with	some	tweaks.	In	our	example	at	the	beginning	of	this	article,	we	explained	the	second	parameters	of	the	round()	function	is	used	to	indicate	the	number	of	digits	we	want	to	keep.	If	you	use	a	negative	value,	you’d	actually	let	the	function
know	that:	-1:	you	want	to	round	to	the	closest	10	-2:	you	wish	to	round	to	the	closest	100-3:	you	wish	to	round	to	the	closest	1000	etc…	print(round(987,-1))	print(round(1010,-2))	print(round(1987,-3))Code	language:	Python	(python)	Output:	Code	language:	Python	(python)	Awesome,	right?	Now	let’s	see	how	we	can	achieve	the	same	using	the	math
library.	The	logic	is	less	straightforward	(in	my	opinion)	but	can	be	achieved	with	a	reduced	number	of	lines.	Let’s	do	it	with	990.	Two	steps:	We	first	calculate	the	math.ceil()	or	math.floor(),	divided	by	the	multiple	we	want	to	get.	Let’s	assume	I	want	a	multiple	of	100	here:	print(math.ceil(990/100))	Code	language:	PHP	(php)	We	then	multiply	it	by
the	multiple	again	to	get	the	closest	multiple	of	100	print(math.ceil(990/100)*100)	Code	language:	PHP	(php)	The	same	logic	can	be	applied	with	math.floor()	obviously:	it	will	depend	on	whether	you	want	to	round	up	or	down.	Sometimes,	we	wish	to	print	a	number	without	a	decimal.	Even	if	we	don’t	want	to	modify	the	value	of	the	variable	holding
this	number.	To	truncate	a	float	in	Python,	you	just	need	to	use	the	format()	method.	value	=	132.8747474	print('the	value	is	equal	to	{}'.format(round(value,	2)))Code	language:	Python	(python)	Output:	the	value	is	equal	to	132.87Code	language:	Python	(python)	Rounding	a	number	simplifies	it	while	keeping	its	value	as	close	as	possible	to	the
original.	Python	provides	various	methods	to	round	numbers,	depending	on	how	we	want	to	handle	the	precision	or	rounding	behavior.	In	this	article,	we'll	cover	the	most	commonly	used	techniques	for	rounding	numbers	in	Python,	along	with	examples.	For	example,	Input	is	3.5	then	Output	should	be	4.Using	Built-in	round()	FunctionPython’s	built-in
round()	function	rounds	a	number	to	a	given	precision.	If	no	precision	is	specified,	it	rounds	to	the	nearest	integer.	python	print(round(11))	print(round(22.7))	print(round(4.465,	2))	print(round(4.476,	2))	print(round(4.473,	2))	Output11	23	4.46	4.48	4.47	Explanation:round(x)	rounds	x	to	the	nearest	integer.round(x,	n)	rounds	x	to	n	decimal
places.Using	Truncation	(Cutting	Off	Digits)Truncation	cuts	off	digits	after	a	specified	number	of	decimal	places	without	rounding.	It	works	for	both	positive	and	negative	numbers.	python	def	truncate(num,	dec=0):	mult	=	10	**	dec	return	int(num	*	mult)	/	mult	print(truncate(16.5))	print(truncate(-3.853,	1))	print(truncate(3.815,	2))
print(truncate(346.8,	-1))	print(truncate(-2947.48,	-3))	Output16.0	-3.8	3.81	340.0	-2000.0	Explanation:Multiplies	by	10^dec,	truncates,	and	divides	back.Useful	when	you	only	want	to	chop	off	digits,	not	round.Using	math.ceil()	and	math.floor()Python’s	math	module	provides	two	essential	functions:ceil(x):	Rounds	up	to	the	nearest	integer.floor(x):
Rounds	down	to	the	nearest	integer.	python	import	math	print(math.ceil(4.2))	print(math.ceil(-0.5))	print(math.floor(2.2))	print(math.floor(-0.5))	Explanation:ceil(x)	always	rounds	up.floor(x)	always	rounds	down,	even	for	negative	numbers.Round	Up	to	Specific	Decimal	PlacesIf	we	want	to	round	up	to	a	specified	decimal	place,	you	can	combine
multiplication,	math.ceil(),	and	division.	python	import	math	def	round_up(num,	dec=0):	mult	=	10	**	dec	return	math.ceil(num	*	mult)	/	mult	print(round_up(2.1))	print(round_up(2.23,	1))	print(round_up(2.543,	2))	print(round_up(22.45,	-1))	print(round_up(2352,	-2))	Output3.0	2.3	2.55	30.0	2400.0	Explanation:Shifts	decimal	right,	applies	ceil(),	and
shifts	back.Works	for	positive	and	negative	numbers.We	can	follow	the	diagram	below	to	understand	round	up	and	round	down.	Round	up	to	the	right	and	down	to	the	left.	Rounding	up	always	rounds	a	number	to	the	right	on	the	number	line	and	rounding	down	always	rounds	a	number	to	the	left	on	the	number	line.	Round	Down	to	Specific	Decimal
PlacesSimilarly,	for	rounding	down	we	can	use	floor()	function	instead	of	ceil():	python	import	math	def	round_down(num,	dec=0):	mult	=	10	**	dec	return	math.floor(num	*	mult)	/	mult	print(round_down(2.5))	print(round_down(2.48,	1))	print(round_down(-0.5))	Explanation:	Same	shifting	logic	as	round	up,	but	using	floor().Round	Numbers	Using
NumPyNumPy	provides	the	np.round()	function	for	rounding	arrays	or	numbers	efficiently.	Python	import	numpy	as	np	arr	=	np.array([1.234,	2.567,	3.789])	print("Nearest	integer:",	np.round(arr))	print("Two	decimals:",	np.round(arr,	2))	OutputNearest	integer:	[1.	3.	4.]	Two	decimals:	[1.23	2.57	3.79]	Explanation:np.round(arr)	rounds	to	the	nearest
whole	number.np.round(arr,	n)	rounds	to	n	decimals.Round	Numbers	in	Python	using	Rounding	Bias	conceptWhen	rounding	large	datasets,	we	must	avoid	rounding	bias.	Python	supports	several	rounding	methods	for	that	and	most	generally	used	methods	are:1.	Rounding	Half	UpAlways	rounds	.5	upward.	python	import	math	def	round_half_up(num,
dec=0):	mult	=	10	**	dec	return	math.floor(num	*	mult	+	0.5)	/	mult	print(round_half_up(1.28,	1))	print(round_half_up(-1.5))	print(round_half_up(-1.225,	2))	Explanation:	Adds	0.5	before	flooring	to	simulate	"round	half	up."2.	Rounding	Half	DownAlways	rounds	.5	downward.	python	import	math	def	round_half_down(num,	dec=0):	mult	=	10	**	dec
return	math.ceil(num	*	mult	-	0.5)	/	mult	print(round_half_down(2.5))	print(round_half_down(-2.5))	print(round_half_down(2.25,	1))	Explanation:	Subtracts	0.5	before	applying	ceil()	to	simulate	"round	half	down."Rounding	Half	to	Even	(Bankers'	Rounding)Python’s	built-in	round()	uses	round	half	to	even	strategy,	which	rounds	.5	to	the	nearest	even
number	to	minimize	bias.If	n	is	positive	and	d	>=	5,	round	upIf	n	is	positive	and	d	=	5,	round	downIf	n	is	negative	and	d	>=	5,	round	downIf	n	is	negative	and	d	<	5,	round	upAfter	rounding	as	per	the	rules	mentioned	above,	we	can	shift	the	decimal	place	back	to	the	left.	python	from	decimal	import	Decimal	print(Decimal("0.1"))	print(Decimal(0.1))
print(Decimal("1.65").quantize(Decimal("1.0")))	print(Decimal("1.675").quantize(Decimal("1.00")))	Output0.1	0.1000000000000000055511151231257827021181583404541015625	1.6	1.68	Explanation:Decimal	offers	precise	control	over	decimal	rounding.quantize()	rounds	to	specified	decimal	places	with	minimal	floating-point	error.Related
articles:NumPyDecimal	moduleFloor	Ceilround()	function	in	Python	DOWNLOAD	51	PYTHON	PROGRAMS	PDF	FREE	In	this	tutorial,	I	will	explain	how	to	round	numbers	in	Python.	As	a	data	scientist	working	for	a	US-based	company,	I	often	encounter	situations	where	I	need	to	round	decimal	numbers	to	the	nearest	integer	or	a	specific	number	of
decimal	places.	Let’s	get	in	and	explore	the	various	methods	to	round	numbers	in	Python.	Python	provides	built-in	functions	and	modules	that	make	rounding	numbers	easy.	Let	us	see	some	important	methods	to	achieve	this	task.	Python	has	a	built-in	round()	function	that	takes	two	arguments:	the	number	to	be	rounded	and	an	optional	number	of
decimal	places.	The	basic	syntax	is	as	follows:	rounded_number	=	round(number,	ndigits)	Here’s	an	example:	price	=	9.99	rounded_price	=	round(price,	1)	print(rounded_price)	Output:	10.0	I	have	executed	the	above	example	and	added	the	screenshot	below.	In	this	example,	we	have	a	variable	price	with	a	value	of	9.99.	We	use	the	round()	function
to	round	it	to	one	decimal	place,	which	results	in	10.0.	If	you	leave	the	ndigits	argument,	round()	will	round	the	number	to	the	nearest	integer:	score	=	85.67	rounded_score	=	round(score)	print(rounded_score)	Output:	86	Here,	the	score	of	85.67	is	rounded	to	the	nearest	integer,	which	is	86.	Read	How	to	Check	if	a	Number	is	Even	or	Odd	in	Python
Let’s	say	you’re	working	on	a	project	for	a	US-based	e-commerce	company,	and	you	need	to	display	product	prices	rounded	to	two	decimal	places.	You	can	achieve	this	using	the	round()	function:	product_price	=	19.9873	display_price	=	round(product_price,	2)	print(display_price)	Output:	19.99	I	have	executed	the	above	example	and	added	the
screenshot	below.	In	this	case,	the	product_price	is	rounded	to	two	decimal	places,	resulting	in	19.99.	Check	out	How	to	Generate	Random	4-Digit	Numbers	in	Python	If	you	need	to	round	a	number	up	to	the	nearest	integer,	you	can	use	the	math.ceil()	function	from	the	math	module.	Here’s	an	example:	import	math	age	=	25.4	rounded_age	=
math.ceil(age)	print(rounded_age)	Output:	26	I	have	executed	the	above	example	and	added	the	screenshot	below.	In	this	example,	the	age	25.4	is	rounded	up	to	the	nearest	integer,	which	is	26.	Read	How	to	Check	if	a	Python	String	Contains	Only	Numbers	Similarly,	if	you	want	to	round	a	number	down	to	the	nearest	integer,	you	can	use	the
math.floor()	function:	import	math	temperature	=	98.7	rounded_temperature	=	math.floor(temperature)	print(rounded_temperature)	Output:	98	Here,	the	temperature	of	98.7	is	rounded	down	to	the	nearest	integer,	which	is	98.	Read	How	to	Floor	a	Number	in	Python	Python’s	decimal	module	provides	more	precise	control	over	rounding	behavior.	It
allows	you	to	specify	the	rounding	mode	explicitly.	Here’s	an	example:	from	decimal	import	Decimal,	ROUND_HALF_UP	amount	=	Decimal('7.85')	rounded_amount	=	amount.quantize(Decimal('0.1'),	rounding=ROUND_HALF_UP)	print(rounded_amount)	Output:	7.9	In	this	example,	we	create	an	Decimal	object	with	the	value	‘7.85’.	We	then	use	the
quantize()	method	to	round	it	to	one	decimal	place	using	the	ROUND_HALF_UP	rounding	mode,	which	rounds	numbers	ending	in	5	up	to	the	next	digit.	Check	out	How	to	Find	Factors	of	a	Number	in	Python	If	you’re	working	with	NumPy	arrays,	you	can	use	the	numpy.round()	function	to	round	the	elements	of	an	array:	import	numpy	as	np	data	=
np.array([1.23,	4.56,	7.89])	rounded_data	=	np.round(data,	1)	print(rounded_data)	Output:	[1.2	4.6	7.9]	Here,	we	have	a	NumPy	array	data	containing	decimal	numbers.	We	use	np.round()	to	round	the	elements	of	the	array	to	one	decimal	place.	Read	How	to	Format	Numbers	as	Currency	in	Python	Suppose	when	you	are	working	with	floating-point
numbers	in	Python.	Due	to	the	way	floating-point	numbers	are	represented	internally,	rounding	can	sometimes	produce	unexpected	results.	For	example,	let’s	say	you’re	calculating	the	average	temperature	in	New	York	City:	temperatures	=	[75.4,	68.2,	80.9,	72.5]	average_temperature	=	round(sum(temperatures)	/	len(temperatures),	1)
print(average_temperature)	Output:	74.2	Although	the	expected	result	is	74.3,	the	actual	output	is	74.2	due	to	the	limitations	of	floating-point	arithmetic.	To	mitigate	such	issues,	you	can	use	the	decimal	module	for	more	precise	decimal	calculations:	from	decimal	import	Decimal	temperatures	=	[Decimal('75.4'),	Decimal('68.2'),	Decimal('80.9'),
Decimal('72.5')]	average_temperature	=	round(sum(temperatures)	/	len(temperatures),	1)	print(average_temperature)	Output:	74.3	By	using	Decimal	objects	instead	of	floating-point	numbers,	you	can	achieve	more	accurate	results.	Check	out	How	to	Get	the	Decimal	Part	of	a	Number	in	Python	In	this	tutorial,	we	explored	various	methods	to	round
numbers	in	Python.	We	covered	the	built-in	round()	function,	the	math.ceil()	and	math.floor()	functions	for	rounding	up	and	down,	the	decimal	module	for	rounding	control,	and	rounding	NumPy	arrays	using	numpy.round().	You	may	also	like	to	read:	I	am	Bijay	Kumar,	a	Microsoft	MVP	in	SharePoint.	Apart	from	SharePoint,	I	started	working	on
Python,	Machine	learning,	and	artificial	intelligence	for	the	last	5	years.	During	this	time	I	got	expertise	in	various	Python	libraries	also	like	Tkinter,	Pandas,	NumPy,	Turtle,	Django,	Matplotlib,	Tensorflow,	Scipy,	Scikit-Learn,	etc…	for	various	clients	in	the	United	States,	Canada,	the	United	Kingdom,	Australia,	New	Zealand,	etc.	Check	out	my	profile.
When	working	with	float	values	(numbers	with	decimal	values)	in	our	Python	program,	we	might	want	to	round	them	up	or	down,	or	to	the	nearest	whole	number.	In	this	article,	we'll	see	some	built-in	functionalities	that	let	us	round	numbers	in	Python.	And	we'll	see	how	to	use	them	with	some	examples.	We'll	start	with	the	round()	function.	By
default,	it	rounds	a	number	to	the	nearest	whole	number.	We'll	also	see	how	to	use	the	function's	parameters	to	change	the	type	of	result	returned	to	us.	We'll	then	talk	about	the	math.ceil()	and	math.floor()	methods	which	rounds	up	and	rounds	down	a	number	to	the	nearest	whole	number/integer	respectively.	These	two	methods	are	from	the	built-in
math	module	in	Python.	The	round()	function	takes	in	two	parameters.	Here's	what	the	syntax	looks	like:	round(number,	decimal_digits)	The	first	parameter	–	number	–	is	the	number	we	are	rounding	to	the	nearest	whole	number.	The	second	parameter	–	decimal_digits	–	is	the	number	of	decimals	to	be	returned.	The	default	value	is	0.	Let's	see	some
examples.	x	=	2.56789	print(round(x))	In	our	first	example,	we're	using	only	one	parameter	–	the	number	to	be	rounded,	which	is	2.56789.	When	we	passed	in	the	number	variable	to	the	round()	function,	it	got	rounded	to	the	nearest	whole	number	which	is	3.	That's	how	easy	it	is	to	use!	Now,	let's	work	with	the	second	parameter.	x	=	2.56789
print(round(x,	2))	The	code	above	is	similar	to	the	last	example	except	for	the	second	parameter.	We	passed	in	a	value	of	two.	This	will	round	the	number	to	the	nearest	hundredth	(two	decimal	places).	In	our	case,	2.57	was	returned.	That	is,	2.56789	to	2.57.	Let's	see	one	last	example	to	fully	understand	how	the	second	parameter	works.	x	=	2.56789
print(round(x,	3))	Now,	we've	made	the	second	parameter	3.	We'll	get	the	number	rounded	to	the	nearest	thousandth	(three	decimal	places).	The	initial	number	–	2.56789	–	was	rounded	to	2.568.	The	math.ceil()	method	simple	takes	in	the	number	to	be	rounded	up	as	its	parameter.	Here's	what	the	syntax	looks	like:	math.ceil(number)	Here's	an
example:	import	math	x	=	5.57468465	print(math.ceil(x))	In	the	code	above,	you'll	notice	that	we	first	imported	the	math	module:	import	math.	This	give	us	access	to	all	the	methods	provided	by	the	module.	We	created	an	x	variable	which	has	5.57468465	as	its	value.	In	order	to	round	this	number	up	to	the	nearest	whole	number,	we	passed	in	the
number	(in	the	x	variable)	to	the	math.ceil()	method:	math.ceil(x).	The	resulting	value	from	this	operation,	as	can	be	seen	in	the	code	above,	is	6.	Just	like	we	did	in	the	last	section,	in	order	to	use	the	math.floor()	method,	we	must	first	import	the	math	module.	Here's	the	syntax	for	math.floor()	method:	math.floor(number)	Let's	see	an	example.	import
math	x	=	5.57468465	print(math.floor(x))	As	expected,	we	passed	in	the	number	to	be	rounded	down	to	the	math.floor()	method:	math.floor(x).	The	x	variable	has	the	number	5.57468465	stored	in	it.	This	number	got	rounded	down	to	5.	In	this	article,	we	talked	about	three	built-in	functionalities	in	Python	that	let	us	round	numbers.	The	round()
function	rounds	a	number	to	the	nearest	whole	number.	The	math.ceil()	method	rounds	a	number	up	to	the	nearest	whole	number	while	the	math.floor()	method	rounds	a	number	down	to	the	nearest	whole	number.	These	two	methods	are	both	accessible	through	the	math	module.	With	the	examples	given	in	each	section,	we	were	able	to	see	how	to
use	each	functionality	to	obtain	our	desired	result.	Happy	coding!	This	article	will	show	you	how	to	round	numbers	up,	down,	and	to	the	nearest	1,	10	100	(or	any	number)	in	the	Python	programming	language.	Truncation	vs.	Rounding	Truncation	isn’t	technically	rounding,	but	it	serves	a	similar	purpose,	so	I’ll	include	it	here.	It’s	the	simplest	way	to
shorten	a	number	–	just	cutting	off	the	characters	at	the	end	until	it’s	in	the	format	you	require.	Rounding	gets	the	nearest	number,	whereas	truncation	cuts	off	digits	from	the	number.	For	example:	To	round	2.9	to	the	nearest	whole	number	would	give	3	To	truncate	2.9	to	the	nearest	whole	number	would	give	2	Using	The	math.trunc()	Method	to
Return	the	Truncated	Integer	Part	of	a	Number	The	math.trunc()	method	is	part	of	the	Python	math	library	and	performs	truncation	to	the	nearest	integer	(whole	number).	Here	it	is	in	action:	#	Import	the	math	library	import	math	#	print	a	truncated	number	print(math.trunc(3.7))	#	Will	print	the	number	3	As	it	is	simply	removing	all	information
after	the	decimal	place,	it	will	round	any	negative	number	up	and	any	positive	number	down.	Truncation	to	a	Set	Number	of	Decimals	Python	lacks	a	built-in	function	for	truncating	to	an	arbitrary	number	of	decimals	(rather	than	just	the	nearest	integer	as	above).	This	function	fills	this	role	–	you	can	copy	and	paste	it	straight	into	your	code.	#	Import
the	math	library	import	math	#	define	a	function	to	truncate	a	number	to	a	given	number	of	decimal	places	(defaulting	to	0	decimal	places)	def	truncateToDecimals(number,	decimals=0):	if	not	isinstance(decimals,	int):	raise	TypeError("decimals	places	must	be	an	integer.")	elif	decimals	<	0:	raise	ValueError("decimals	must	be	greater	than	or	equal
to	0")	if	decimals	==	0:	return	math.trunc(number)	return	math.trunc(number	*	10.0	**	decimals)	/	10.0	**	decimals	Here	it	is	in	use:	truncateToDecimals(6.76666,	3)	#	Will	return	6.766	Rounding	to	A	Specified	Number	of	Decimal	Places	The	Python	round()	function	can	be	used	to	round	a	number	to	a	set	number	of	decimal	places.	Here	it	is	in
action:	round(8.9873,	2)	#	Will	return	8.99	The	round()	function	accepts	2	parameters	–	the	number	to	round	followed	by	the	number	of	decimal	places	to	round	to.	If	the	number	of	decimal	places	is	not	supplied,	it	defaults	to	0.	Using	math.ceil()	to	Round	Up	To	The	Nearest	Integer	The	math.ceil()	method	rounds	a	given	number	up	to	the	nearest
integer.	math.ceil(2.4)	#	Will	return	3	math.ceil(-3.9)	#	will	return	-3	It	gets	the	nearest	integer	that	is	greater	than	or	equal	to	the	number	given	to	it.	Using	math.floor()	to	Round	Down	To	The	Nearest	Integer	Conversely,	math.floor()	rounds	a	given	number	down	to	the	nearest	integer:	math.floor(2.4)	#	Will	return	2	math.floor(-3.9)	#	Will	return	-4
It	gets	the	nearest	integer	that	is	less	than	or	equal	to	the	number	given	to	it.	Rounding	to	the	Nearest	2,	10,	5,	Whatever	The	below	functions	will	accept	a	number	and	round	it	to	the	nearest	whole	number	in	whatever	base	you	want,	defaulting	to	base	10:	In	Python	2	def	roundToNearest(inputNumber,	base=10):	return	int(base	*
round(float(inputNumber)/base))	In	Python	3	def	roundToNearest(inputNumber,	base=10):	return	base	*	round(inputNumber/base)	This	can	be	useful	if	rounding	to	calculate	change	for	a	currency	in	which	the	smallest	denomination	coin	is	larger	than	the	smallest	unit	of	currency	(for	example,	Australia’s	smallest	value	coin	is	5	cents,	but	the
currency	allows	for	prices	in	1	cent	increments).	Conclusion	That	pretty	much	covers	the	main	rounding	methods	for	Python.	There	are	several	popular	math	and	data	processing	libraries	for	Python	(like	NumPy)	–	I’ll	dig	into	some	of	the	functionality	of	those	in	future	articles	–	be	sure	to	subscribe	to	our	Twitter	to	stay	up	to	date.	Meanwhile,	now
that	you	have	some	rounded	numbers	why	not	plot	them	on	a	scatter	plot?	Python	is	considered	one	of	the	easier	programming	languages	to	learn	and	boasts	a	massive	standard	library.	Not	to	mention,	it	supplies	the	flexibility	to	approach	problems	in	different	ways.		Case	in	point:	rounding	a	number.	There	are	a	few	different	ways	you	can	round	a
number	in	Python.	In	this	post,	we	will	look	at	four	approaches,	beginning	with	the	built-in	round()	function.	Rounding	Numbers	with	the	round()	Function	Using	the	round()	function	is	one	of	the	most	straightforward	ways	to	round	a	number	in	Python.	It	accepts	two	numeric	arguments,	"n"	and	"ndigits."		It	processes	these	inputs,	rounding	the
number	held	in	"n"	to	"ndigits."	By	default,	the	value	of	the	"ndigits"	argument	is	zero.	So,	if	you	don't	give	it	any	value,	the	number	in	"n"	will	turn	into	an	integer.		If	you've	handled	number	rounding	before,	there's	a	good	chance	that	you	approach	it	this	way:	You	round	the	number	"n"	to	"p"	decimal	places	by	shifting	n's	decimal	point	by	p	places.
The	value	in	n	is	multiplied	by	10p	to	get	a	value	"m."		You	then	look	at	the	number	in	the	m's	first	decimal	place.	Let's	say	this	number	is	"d."	If	"d"	is	less	than	5,	you	round	m	down;	else,	you	round	m	up.		Lastly,	you	move	the	decimal	point	back	p	places	by	dividing	m	by	10p.	The	algorithm	is	quite	straightforward.	Even	if	you	don't	usually	approach
rounding	this	way,	you	should	be	able	to	understand	it.		All	it's	doing	is	taking	the	last	digit	after	the	decimal	point	and	rounding	down	the	number	if	it	is	below	5.	If	it	is	above	5,	the	algorithm	round	it	up.	Meaning	if	you	try	to	round	2.5	with	this	algorithm,	it'll	round	up	to	3.	But	if	you	try	to	round	1.64	with	it,	it'll	round	down	to	1.6.		But	this	is	not
how	the	round()	function	works.	Here's	what	happens	when	you	try	to	round	2.5	with	the	function.		>>>	round(2.5)	2	Surprising,	right?	But	what	happens	when	you	try	to	round	1.5	with	the	same	function?	>>>	round(1.5)	2	Which	isn't	what	you'd	expect.	But	these	outputs	aren't	a	cause	for	alarm	–	you	don't	have	to	raise	an	issue	on	the	Python	bug
tracker.	This	is	because	the	method	is	designed	to	work	this	way.		This	is	because	Python	uses	the	IEEE	754	standard	for	rounding.	The	approach	is	termed	"banker's	rounding,"	and	the	idea	behind	it	is	that	the	numbers	are	rounded	to	the	nearest	value	with	an	even	least	significant	digit.	If	you	don't	think	this	rounding	strategy	suits	your	needs,
there	are	three	other	ways	you	can	round	a	number	in	Python.	Rounding	Numbers	by	Truncating	Truncating	is	the	simplest	way	of	rounding	numbers	but	is	also	the	most	primitive.	The	idea	behind	truncating	is	that	all	the	digits	after	a	given	position	are	replaced	with	zero.	Value	Truncated	To	Result	14.	568	Tens	place	10	14.	568	Ones	place	14	14.
568	Tenths	place	14.5	14.	568	Hundredths	place	14.56	Here's	what	the	truncation	algorithm	does:	The	number	you	supply	is	multiplied	by	1000.	This	shifts	the	decimal	point	three	places	to	the	right.	The	integer	part	of	the	new	number	is	taken	with	int().	This	number	is	divided	by	1000	to	shift	the	decimal	places	back	three	places.	It's	easy	to
generalize	this	process	–	all	you	have	to	do	is	replace	"1000"	with	10p,	with	"p"	indicating	the	number	of	decimal	places	to	truncate.		Here's	what	the	function	will	look	like:	def	truncate(n,	decimals=0):					multiplier	=	10	**	decimals					return	int(n	*	multiplier)	/	multiplier	The	second	argument	in	this	truncate()	function	defaults	to	0.	The	function
returns	the	integer	part	of	the	number	passed	to	it	if	no	second	argument	is	passed.	You	can	use	this	function	equally	well	with	the	positive	and	negative	numbers:	>>>	truncate(12.5)	12.0	>>>	truncate(-5.963,	1)	-5.9	>>>	truncate(1.625,	2)	1.62	>>>	truncate(125.6,	-1)	120.0	>>>	truncate(-1374.25,	-3)	-1000.0	You	may	have	noticed	that
truncating	a	positive	number	results	in	rounding	down.	On	the	other	hand,	truncating	a	negative	number	results	in	it	rounding	up.		If	the	program	you're	writing	needs	you	to	round	up	or	round	down	numbers	specifically,	you	can	write	programs	for	both	of	these	applications.		Let's	explore	what	these	rounding	methods	look	like.	Rounding	Up
Numbers		The	idea	of	rounding	up	a	number	involves	rounding	it	to	the	next	higher	number	up	to	a	specific	number	of	digits.	Here's	a	table	that	summarizes	this:	Value	Truncated	To	Result	14.	568	Tens	place	20	14.	568	Ones	place	15	14.	568	Tenths	place	14.6	14.	568	Hundredths	place	14.57	You	can	use	the	ceil()	function	in	the	math	module	to
round	up	numbers	in	Python.	As	you	might	be	able	to	guess,	the	name	of	the	ceil()	method	is	derived	from	the	word	"ceiling."		The	term	ceiling	in	math	describes	the	nearest	integer	that	is	greater	than	or	equal	to	a	given	number.	By	the	same	token,	the	nearest	integer	that	is	lower	than	or	equal	to	a	given	number	is	its	floor.		You	must	note	that	the
numbers	that	lie	between	two	integers	are	not	themselves	integers.	More	importantly,	the	ceiling	of	two	intervals	is	the	greater	of	the	two	intervals.	Let's	go	over	this	concept	with	an	example.	The	number	2.2	lies	between	2	and	3,	making	its	floor	2	and	its	ceiling	3.	You	might	be	aware	of	the	concept	of	the	ceiling	function,	which	maps	every	number
to	its	ceiling.		The	function	also	accepts	integers,	mapping	their	ceilings	to	the	integer	itself.	Python	also	provides	a	ceiling	function	math.ceil(),	which	returns	the	nearest	integer	greater	than	or	equal	to	the	input.		>>>	import	math	>>>	math.ceil(3.2)	4	>>>	math.ceil(4)	4	>>>	math.ceil(-0.7)	0	So,	this	is	an	excellent	built-in	Python	function	you	can
use	to	round	up	numbers.	But	you	also	have	the	option	of	writing	your	own	function,	like	so:	def	round_up(n,	decimals=0):					multiplier	=	10	**	decimals					return	math.ceil(n	*	multiplier)	/	multiplier	It	might	seem	like	this	round_up()	function	is	a	lot	like	the	truncate()	function.	This	is	because	their	algorithms	are	quite	similar.	It	shifts	the	decimal
point	in	n	the	right	number	of	places	to	the	right.	This	is	done	by	multiplying	n	by	10	**	decimals.		The	derived	value	is	rounded	up	to	the	nearest	integer	with	the	math.ceil()	function.	Then,	the	program	shifts	the	decimal	point	to	the	left	by	dividing	the	value	by	10	**	decimals.		Most	techniques	for	rounding	numbers	have	similar	steps	–	the	decimal
point	is	shifted,	some	rounding	method	is	applied,	then	the	decimal	point	is	shifted	back.		This	pattern	of	rounding	numbers	is	so	popular	because	it's	the	most	obvious	mental	algorithm	humans	came	up	with	to	round	numbers.		Here	are	a	few	instances	of	the	round-up	function	in	action:	>>>	round_up(2.1)	3.0	>>>	round_up(4.23,	1)	4.3	>>>
round_up(7.543,	2)	7.55	It's	also	worth	noting	that	you	can	pass	a	negative	value	to	the	"decimals"	part	of	the	algorithm,	as	you	would	in	truncate().	Here's	how	that	would	work:	>>>	round_up(32.45,	-1)	40.0	>>>	round_up(1452,	-2)	1500	When	a	negative	number	is	passed	to	the	function	in	this	way,	the	first	argument	written	in	the	function	rounds
it	to	the	appropriate	number	of	digits	to	the	left	of	the	decimal	point.	Knowing	this,	does	this	make	you	curious	about	what	passing	a	negative	value	to	round_up()	would	do?	Let's	have	a	look:	>>>	round_up(-1.5)	-1.0	You	might	have	expected	expecting	symmetry	around	zero	when	rounding	numbers.	This	might	have	led	you	to	think	that	just	like	1.5
is	rounded	to	2,	-1.5	must	round	up	to	-2.0.	You	need	to	remember	how	the	math.ceil()	function	works	to	make	sense	of	the	real	result.		It	helps	to	remember	the	difference	between	rounding	up	and	down.		Visualize	a	number	scale	going	from	-5	to	5.	Rounding	up	means	the	value	jumps	from	left	to	right.	In	contrast,	rounding	down	means	the	value
jumps	from	right	to	left.		Rounding	Down	Numbers	Rounding	down	a	number	is	the	opposite	of	rounding	it	up.	The	idea	of	rounding	down	a	number	involves	rounding	it	to	the	next	lower	number	up	to	a	specific	number	of	digits.	Here's	a	table	that	summarizes	this:	Value	Truncated	To	Result	14.	568	Tens	place	10	14.	568	Ones	place	14	14.	568
Tenths	place	14.5	14.	568	Hundredths	place	14.56	Rounding	a	number	down	in	Python	involves	more	or	less	the	same	algorithm	that	round_up()	and	truncate()	use.	You	shift	the	decimal	point,	round	to	an	integer,	and	shift	back	the	decimal	point.		The	nice	thing	about	Python	is	that	the	standard	library	comes	with	the	math.floor()	method,	which	does
the	opposite	of	what	the	ceil()	method	does.	It	rounds	to	the	floor	of	the	number	in	question	after	shifting	the	decimal	point.		>>>	math.floor(2.2)	2	>>>	math.floor(-1.5)	-2	Let's	now	look	at	how	you	would	write	the	round_down()	function:	def	round_down(n,	decimals=0):					multiplier	=	10	**	decimals					return	math.floor(n	*	multiplier)	/	multiplier
So,	as	you	can	see,	the	program	is	the	same	as	the	round_up()	program,	except	math.ceil()	has	been	replaced	with	math.floor().	Let's	try	putting	a	few	different	values	in	round_down():	>>>	round_down(2.5)	2	>>>	round_down(3.37,	1)	3.3	>>>	round_down(-0.7)	-1	Writing	a	round_up()	or	round_down()	function	is	an	excellent	way	to	round	numbers
quickly.	But	bear	in	mind	that	the	impact	on	the	data	is	extreme.		If	you	use	these	functions	in	a	large	dataset,	the	dataset	will	likely	become	significantly	less	precise.	This	decrease	in	precision	can	dramatically	alter	computations	done	using	the	data.	❮	Built-in	Functions	Definition	and	Usage	The	round()	function	returns	a	floating	point	number	that
is	a	rounded	version	of	the	specified	number,	with	the	specified	number	of	decimals.	The	default	number	of	decimals	is	0,	meaning	that	the	function	will	return	the	nearest	integer.	Syntax	Parameter	Values	Parameter	Description	number	Required.	The	number	to	be	rounded	digits	Optional.	The	number	of	decimals	to	use	when	rounding	the	number.
Default	is	0	More	Examples	Round	to	the	nearest	integer:	x	=	round(5.76543)print(x)	Try	it	Yourself	»	❮	Built-in	Functions	This	article	explains	how	to	round	numbers	(floating	point	numbers	float	and	integers	int)	in	Python.	For	more	information	on	rounding	down	and	up	decimals	(floor	and	ceiling),	refer	to	the	following	article.	Round	up/down
decimals	in	Python	(math.floor,	math.ceil)	For	details	on	the	round()	function	in	NumPy	and	pandas,	refer	to	the	following	articles.	Built-in	round()	function	In	Python,	the	built-in	round()	function	is	available.	Built-in	Functions	-	round()	—	Python	3.12.1	documentation	Specify	the	number	to	be	rounded	as	the	first	argument	and	the	number	of	decimal
places	to	round	to	as	the	second	argument,	ndigits.	Round	decimals	to	a	specific	number	of	digits	For	floating	point	numbers	(float),	if	the	second	argument	is	omitted,	round()	rounds	to	and	returns	an	integer	(int).	f	=	123.456	print(round(f))	#	123	print(type(round(f)))	#	When	a	second	argument	is	specified,	it	returns	a	floating	point	number	(float).
Specifying	a	positive	integer	rounds	to	that	number	of	decimal	places,	while	specifying	a	negative	integer	rounds	to	that	number	of	integer	places.	For	example,	-1	rounds	to	the	tens	place,	-2	to	the	hundreds	place.	0	rounds	to	an	integer,	but	returns	float.	print(round(f,	1))	#	123.5	print(round(f,	2))	#	123.46	print(round(f,	-1))	#	120.0	print(round(f,
-2))	#	100.0	print(round(f,	0))	#	123.0	print(type(round(f,	0)))	#	Round	integers	to	a	specific	number	of	digits	For	integers	(int),	round()	returns	the	original	number	when	the	second	argument	is	omitted,	0,	or	any	positive	integer.	If	a	negative	integer	is	specified,	it	rounds	to	the	corresponding	integer	digit	(-1	for	tens,	-2	for	hundreds,	etc.).	In	all
cases,	it	returns	an	integer	(int).	i	=	99518	print(round(i))	#	99518	print(round(i,	2))	#	99518	print(round(i,	-1))	#	99520	print(round(i,	-2))	#	99500	print(round(i,	-3))	#	100000	round()	rounds	half	to	even	(bankers'	rounding)	round()	uses	bankers'	rounding,	which	means	it	rounds	half	to	even.	For	example,	0.5	and	2.5	are	rounded	to	0	and	2,
respectively.	For	the	built-in	types	supporting	round(),	values	are	rounded	to	the	closest	multiple	of	10	to	the	power	minus	ndigits;	if	two	multiples	are	equally	close,	rounding	is	done	toward	the	even	choice	(so,	for	example,	both	round(0.5)	and	round(-0.5)	are	0,	and	round(1.5)	is	2).	Built-in	Functions	-	round()	—	Python	3.12.1	documentation
print('0.5	=>',	round(0.5))	print('1.5	=>',	round(1.5))	print('2.5	=>',	round(2.5))	print('3.5	=>',	round(3.5))	print('4.5	=>',	round(4.5))	#	0.5	=>	0	#	1.5	=>	2	#	2.5	=>	2	#	3.5	=>	4	#	4.5	=>	4	print('	5	=>',	round(5,	-1))	print('15	=>',	round(15,	-1))	print('25	=>',	round(25,	-1))	print('35	=>',	round(35,	-1))	print('45	=>',	round(45,	-1))	#	5	=>	0	#	15
=>	20	#	25	=>	20	#	35	=>	40	#	45	=>	40	Rounding	to	even	occurs	only	when	the	fraction	is	exactly	0.5;	for	example,	2.5	is	rounded	to	2,	but	2.51	is	rounded	to	3.	print('2.49	=>',	round(2.49))	print('2.50	=>',	round(2.5))	print('2.51	=>',	round(2.51))	#	2.49	=>	2	#	2.50	=>	2	#	2.51	=>	3	Rounding	beyond	the	first	decimal	place	may	not	always
conform	to	the	definition	of	rounding	half	to	even.	print('0.05	=>',	round(0.05,	1))	print('0.15	=>',	round(0.15,	1))	print('0.25	=>',	round(0.25,	1))	print('0.35	=>',	round(0.35,	1))	print('0.45	=>',	round(0.45,	1))	#	0.05	=>	0.1	#	0.15	=>	0.1	#	0.25	=>	0.2	#	0.35	=>	0.3	#	0.45	=>	0.5	This	inconsistency	arises	because,	as	mentioned	in	the
documentation,	floating	point	numbers	cannot	always	represent	decimals	precisely.	Note:	The	behavior	of	round()	for	floats	can	be	surprising:	for	example,	round(2.675,	2)	gives	2.67	instead	of	the	expected	2.68.	This	is	not	a	bug:	it's	a	result	of	the	fact	that	most	decimal	fractions	can't	be	represented	exactly	as	a	float.	Built-in	Functions	-	round()	—
Python	3.12.1	documentation	For	example,	increasing	the	number	of	display	digits	shows	that	0.15	is	actually	0.14999....	Since	the	fraction	is	less	than	0.05,	it	rounds	to	0.1.	How	to	use	f-strings	in	Python	print(f'{0.15:.20}')	#	0.14999999999999999445	To	accurately	handle	decimals	or	use	different	rounding	modes,	consider	using	the	decimal
module	from	the	standard	library,	described	next.	decimal.quantize()	The	decimal	module	of	the	standard	library	allows	for	accurate	decimal	floating	point	arithmetic.	The	decimal	module,	being	part	of	the	standard	library,	requires	no	additional	installation	but	must	be	imported	to	be	used.	In	the	following	sample	code,	it	is	imported	as	shown.	Create
Decimal	objects	You	can	create	Decimal	objects	with	Decimal().	Specifying	a	floating	point	number	(float)	creates	a	Decimal	with	the	actual	value.	print(Decimal(0.05))	#	0.05000000000000000277555756156289135105907917022705078125	print(type(Decimal(0.05)))	#	source:	decimal_quantize.py	This	indicates	that	the	floating	point	number	0.05
contains	an	error,	which	is	why	values	such	as	0.05	are	rounded	to	unexpected	values	by	the	built-in	round()	function.	0.5	(=	1/2)	and	0.25	(=	1/4)	can	be	precisely	represented.	Specifying	a	string	(str)	creates	a	Decimal	with	exactly	that	value.	To	convert	float	to	str,	use	str().	Round	decimals	to	a	specific	number	of	digits	The	quantize()	method	of
Decimal	enables	precise	rounding	with	various	modes.	decimal.Decimal.quantize()	—	Python	3.12.1	documentation	Specify	a	Decimal	with	the	desired	precision	as	the	first	argument.	You	can	specify	Decimal()	with	a	string	like	'0.1'	or	'0.01'.	To	round	the	integer	part,	use	scientific	notation	like	'1E1'.	More	details	will	be	discussed	later.	f	=	123.456
print(Decimal(str(f)).quantize(Decimal('0'),	ROUND_HALF_UP))	print(Decimal(str(f)).quantize(Decimal('0.1'),	ROUND_HALF_UP))	print(Decimal(str(f)).quantize(Decimal('0.01'),	ROUND_HALF_UP))	#	123	#	123.5	#	123.46	source:	decimal_quantize.py	Specify	the	rounding	mode	as	the	second	argument,	rounding.	For	example,	0.5	rounds	to	1	with
ROUND_HALF_UP.	print('0.4	=>',	Decimal(str(0.4)).quantize(Decimal('0'),	ROUND_HALF_UP))	print('0.5	=>',	Decimal(str(0.5)).quantize(Decimal('0'),	ROUND_HALF_UP))	print('0.6	=>',	Decimal(str(0.6)).quantize(Decimal('0'),	ROUND_HALF_UP))	#	0.4	=>	0	#	0.5	=>	1	#	0.6	=>	1	source:	decimal_quantize.py	ROUND_HALF_EVEN	performs	the
same	even	rounding	as	the	built-in	round()	function.	By	specifying	values	as	strings	in	Decimal(),	more	accurate	representation	is	ensured,	avoiding	the	floating	point	errors	typically	associated	with	round(),	and	thereby	producing	the	expected	result.	print('0.05	=>',	Decimal(str(0.05)).quantize(Decimal('0.1'),	ROUND_HALF_EVEN))	print('0.15	=>',
Decimal(str(0.15)).quantize(Decimal('0.1'),	ROUND_HALF_EVEN))	print('0.25	=>',	Decimal(str(0.25)).quantize(Decimal('0.1'),	ROUND_HALF_EVEN))	print('0.35	=>',	Decimal(str(0.35)).quantize(Decimal('0.1'),	ROUND_HALF_EVEN))	print('0.45	=>',	Decimal(str(0.45)).quantize(Decimal('0.1'),	ROUND_HALF_EVEN))	#	0.05	=>	0.0	#	0.15	=>	0.2	#
0.25	=>	0.2	#	0.35	=>	0.4	#	0.45	=>	0.4	source:	decimal_quantize.py	For	a	list	of	rounding	modes,	refer	to	the	official	documentation.	There	are	various	rounding	modes	available	besides	ROUND_HALF_UP	and	ROUND_HALF_EVEN.	decimal	-	Rounding	modes	—	Python	3.12.1	documentation	The	quantize()	method	returns	a	Decimal,	which	can	be
converted	to	a	float	using	float().	However,	this	conversion	results	in	a	value	that	is	limited	to	the	representational	capabilities	of	a	float.	d	=	Decimal('123.456').quantize(Decimal('0.01'),	ROUND_HALF_UP)	print(d)	#	123.46	print(type(d))	#	f	=	float(d)	print(f)	#	123.46	print(type(f))	#	print(Decimal(f))	#
123.4599999999999937472239253111183643341064453125	print(Decimal(str(f)))	#	123.46	source:	decimal_quantize.py	Round	integers	to	a	specific	number	of	digits	When	using	the	quantize()	method	to	round	to	integer	digits,	specifying	something	like	'10'	as	the	first	argument	does	not	return	the	desired	result.	i	=	99518
print(Decimal(i).quantize(Decimal('10'),	ROUND_HALF_UP))	#	99518	source:	decimal_quantize.py	This	is	because	quantize()	performs	rounding	based	on	the	exponent	(exponent)	of	the	Decimal	object.	It	is	necessary	to	use	a	scientific	notation	string	(for	example,	'1E1').	You	can	check	exponent	with	the	as_tuple()	method.
print(Decimal('10').as_tuple())	#	DecimalTuple(sign=0,	digits=(1,	0),	exponent=0)	print(Decimal('1E1').as_tuple())	#	DecimalTuple(sign=0,	digits=(1,),	exponent=1)	source:	decimal_quantize.py	Since	integers	can	be	accurately	represented	as	int	types,	you	can	specify	them	directly	as	integers	(int)	in	Decimal().	Of	course,	it	may	be	specified	as	a
string.	print(Decimal(i).quantize(Decimal('1E1'),	ROUND_HALF_UP))	print(Decimal(i).quantize(Decimal('1E2'),	ROUND_HALF_UP))	print(Decimal(i).quantize(Decimal('1E3'),	ROUND_HALF_UP))	#	9.952E+4	#	9.95E+4	#	1.00E+5	source:	decimal_quantize.py	If	you	want	to	use	regular	notation	instead	of	scientific	notation,	use	the	function
introduced	in	the	official	documentation.	decimal	-	FAQ	—	Python	3.12.1	documentation	def	remove_exponent(d):	return	d.quantize(Decimal(1))	if	d	==	d.to_integral()	else	d.normalize()	d	=	Decimal(i).quantize(Decimal('1E2'),	ROUND_HALF_UP)	print(d)	#	9.95E+4	d_remove	=	remove_exponent(d)	print(d_remove)	#	99500	print(type(d_remove))	#
source:	decimal_quantize.py	To	convert	Decimal	to	an	integer	(int),	use	int().	Custom	functions	for	standard	rounding	(rounding	half	up)	Although	the	decimal	module	is	often	the	better	choice	due	to	its	precision,	if	you	simply	want	to	perform	standard	rounding	(rounding	half	up),	defining	a	custom	function	is	another	option.	For	example,	define	the
following	function.	The	return	value	is	always	a	floating	point	number	(float).	def	my_round(number,	ndigits=0):	p	=	10**ndigits	return	(number	*	p	*	2	+	1)	//	2	/	p	If	you	don't	need	to	specify	the	number	of	digits	and	simply	want	to	round	to	an	integer,	a	more	concise	approach	can	be	adopted.	def	my_round_int(number):	return	int((number	*	2	+	1)	//
2)	Round	decimals	to	a	specific	number	of	digits	Here	is	an	example	of	the	result	using	the	function	defined	above.	my_round()	always	returns	a	floating	point	number	(float),	so	use	int()	if	you	want	to	convert	it	to	an	integer	(int).	f	=	123.456	print(my_round(f))	#	123.0	print(int(my_round(f)))	#	123	print(my_round(f,	1))	#	123.5	print(my_round(f,	2))
#	123.46	print(my_round_int(f))	#	123	Unlike	the	built-in	round()	function,	this	rounds	0.5	to	1.	print('0.4	=>',	int(my_round(0.4)))	print('0.5	=>',	int(my_round(0.5)))	print('0.6	=>',	int(my_round(0.6)))	#	0.4	=>	0	#	0.5	=>	1	#	0.6	=>	1	Round	integers	to	a	specific	number	of	digits	Here	is	an	example	of	the	result	using	the	function	defined	above.	i	=
99518	print(int(my_round(i,	-1)))	#	99520	print(int(my_round(i,	-2)))	#	99500	print(int(my_round(i,	-3)))	#	100000	Unlike	the	built-in	round()	function,	this	rounds	5	to	10.	print('4	=>',	int(my_round(4,	-1)))	print('5	=>',	int(my_round(5,	-1)))	print('6	=>',	int(my_round(6,	-1)))	#	4	=>	0	#	5	=>	10	#	6	=>	10	Note:	In	the	case	of	negative	values	With	the
function	defined	above,	-0.5	is	rounded	to	0.	print('-0.4	=>',	int(my_round(-0.4)))	print('-0.5	=>',	int(my_round(-0.5)))	print('-0.6	=>',	int(my_round(-0.6)))	#	-0.4	=>	0	#	-0.5	=>	0	#	-0.6	=>	-1	There	are	various	approaches	to	round	negative	values.	If	you	want	to	round	-0.5	to	-1,	for	example,	do	the	following.	Convert	the	input	value	to	an	absolute
value	using	the	built-in	abs()	function,	and	multiply	by	the	sign	obtained	using	math.copysign()	at	the	end.	import	math	def	my_round2(number,	ndigits=0):	p	=	10**ndigits	return	(abs(number)	*	p	*	2	+	1)	//	2	/	p	*	math.copysign(1,	number)	print('-0.4	=>',	int(my_round2(-0.4)))	print('-0.5	=>',	int(my_round2(-0.5)))	print('-0.6	=>',
int(my_round2(-0.6)))	#	-0.4	=>	0	#	-0.5	=>	-1	#	-0.6	=>	-1	Make	sure	to	click	on	the	correct	subheading	depending	on	how	you	need	to	round	the	number.Use	the	round()	function	to	round	a	float	to	the	nearest	10th	(0.1),	e.g.	result	=	round(4.5678,	1).The	round()	function	will	return	the	number	rounded	to	1-digit	precision	after	the	decimal
point.main.pyCopied!#	฀	round	a	float	to	the	nearest	10th	(0.1)	result_1	=	round(4.5678,	1)	print(result_1)	#	฀		4.6	result_2	=	round(4.1234,	1)	print(result_2)	#	฀		4.1	#	-------------------------------	#	฀	print	a	float	rounded	to	the	nearest	10th	(0.1)	my_float	=	4.5678	my_str_1	=	f'{my_float:.1f}'	print(my_str_1)	#	฀		'4.6'	my_str_2	=	f'{my_float:.2f}'
print(my_str_2)	#	฀		'4.57'	The	code	for	this	article	is	available	on	GitHubThe	round()	function	takes	the	following	2	parameters:NameDescriptionnumberthe	number	to	round	to	ndigits	precision	after	the	decimalndigitsthe	number	of	digits	after	the	decimal,	the	number	should	have	after	the	operation	(optional)The	round	function	returns	the	number
rounded	to	ndigits	precision	after	the	decimal	point.If	ndigits	is	omitted,	the	function	returns	the	nearest	integer.main.pyCopied!my_num	=	3.456	result_1	=	round(my_num)	print(result_1)	#	฀		3	result_2	=	round(my_num,	1)	print(result_2)	#	฀		3.5	If	you	need	to	print	a	floating-point	number	rounded	to	the	nearest	10th	(0.1),	use	a	formatted	string
literal.main.pyCopied!my_float	=	4.5678	my_str_1	=	f'{my_float:.1f}'	print(my_str_1)	#	฀		'4.6'	my_str_2	=	f'{my_float:.2f}'	print(my_str_2)	#	฀		'4.57'	Formatted	string	literals	(f-strings)	let	us	include	expressions	inside	of	a	string	by	prefixing	the	string	with	f.main.pyCopied!my_str	=	'is	subscribed:'	my_bool	=	True	result	=	f'{my_str}	{my_bool}'
print(result)	#	฀		is	subscribed:	True	Make	sure	to	wrap	expressions	in	curly	braces	-	{expression}.We	are	also	able	to	use	the	format	specification	mini-language	in	expressions	in	f-strings.main.pyCopied!my_float	=	1.45678	result_1	=	f'{my_float:.1f}'	print(result_1)	#	฀		'1.5'	result_2	=	f'{my_float:.2f}'	print(result_2)	#	฀		'1.46'	result_3	=
f'{my_float:.3f}'	print(result_3)	#	฀		'1.457'	The	f	character	between	the	curly	braces	stands	for	fixed-point	notation.The	character	formats	the	number	as	a	decimal	number	with	the	specified	number	of	digits	following	the	decimal	point.#	Table	of	Contents#	Round	a	float	to	the	nearest	0.5	in	PythonTo	round	a	float	to	the	nearest	0.5:Call	the	round()
function	passing	it	the	number	multiplied	by	2.Divide	the	result	by	2.The	result	of	the	calculation	is	the	number	rounded	to	the	nearest	0.5.main.pyCopied!import	math	#	฀	Round	number	to	nearest	0.5	def	round_to_nearest_half_int(num):	return	round(num	*	2)	/	2	print(round_to_nearest_half_int(3.1))	#	฀		3.0	print(round_to_nearest_half_int(3.7))	#	฀	
3.5	#	--------------------------------------	#	฀	Round	number	UP	to	nearest	0.5	def	round_up_to_nearest_half_int(num):	return	math.ceil(num	*	2)	/	2	print(round_up_to_nearest_half_int(3.1))	#	฀		3.5	print(round_up_to_nearest_half_int(3.7))	#	฀		4.0	#	--------------------------------------	#	฀	Round	number	DOWN	to	nearest	0.5	def	round_down_to_nearest_half_int(num):
return	math.floor(num	*	2)	/	2	print(round_down_to_nearest_half_int(3.9))	#	฀		3.5	print(round_down_to_nearest_half_int(3.4))	#	฀		3.0	The	code	for	this	article	is	available	on	GitHubWe	used	the	round()	function	to	round	a	number	to	the	nearest	0.5.When	passed	a	single	argument,	the	round()	function	rounds	to	the	nearest
integer.main.pyCopied!print(round(7.4))	#	฀		7	print(round(7.6))	#	฀		8	Here	is	a	step-by-step	example	of	rounding	a	number	up	to	the	nearest	0.5.main.pyCopied!print(3.1	*	2)	#	฀		6.2	print(3.7	*	2)	#	฀		7.4	print(round(3.1	*	2))	#	฀		6	print(round(3.7	*	2))	#	฀		7	print(round(3.1	*	2)	/	2)	#	฀		3.0	print(round(3.7	*	2)	/	2)	#	฀		3.5	This	is	a	two-step
process:Multiply	the	number	by	2	and	round	the	result	to	the	nearest	integer.Divide	the	result	by	2	to	get	the	number	rounded	to	the	nearest	0.5.#	Round	a	float	Up	to	the	nearest	0.5	in	PythonUse	the	math.ceil()	method	if	you	need	to	round	a	float	up	to	the	nearest	0.5.main.pyCopied!import	math	def	round_up_to_nearest_half_int(num):	return
math.ceil(num	*	2)	/	2	print(round_up_to_nearest_half_int(3.1))	#	฀		3.5	print(round_up_to_nearest_half_int(3.7))	#	฀		4.0	print(round_up_to_nearest_half_int(16.2))	#	฀		16.5	The	math.ceil	method	returns	the	smallest	integer	greater	than	or	equal	to	the	provided	number.main.pyCopied!import	math	print(math.ceil(3.1))	#	฀		4	print(math.ceil(3.9))	#	฀		4	If
the	passed-in	number	has	a	fractional	part,	the	math.ceil	method	rounds	the	number	up.Here	is	a	step-by-step	example	of	rounding	a	number	up	to	the	nearest	0.5.main.pyCopied!import	math	print(6.1	*	2)	#	฀		12.2	print(6.6	*	2)	#	฀		13.2	print(math.ceil(6.1	*	2))	#	฀		13	print(math.ceil(6.6	*	2))	#	฀		14	print(math.ceil(6.1	*	2)	/	2)	#	฀		6.5
print(math.ceil(6.6	*	2)	/	2)	#	฀		7.0	This	is	a	two-step	process:Multiply	the	number	by	2	and	round	the	result	up	to	the	nearest	integer.Divide	the	result	by	2	to	get	the	number	rounded	up	to	the	nearest	0.5.#	Round	a	float	Down	to	the	nearest	0.5	in	PythonUse	the	math.floor()	method	to	round	a	number	down	to	the	nearest	0.5.main.pyCopied!import
math	def	round_down_to_nearest_half_int(num):	return	math.floor(num	*	2)	/	2	print(round_down_to_nearest_half_int(3.9))	#	฀		3.5	print(round_down_to_nearest_half_int(3.4))	#	฀		3.0	The	math.floor	method	returns	the	largest	integer	less	than	or	equal	to	the	provided	number.main.pyCopied!import	math	print(math.floor(3.9))	#	฀		3
print(math.floor(3.1))	#	฀		3	If	the	passed-in	number	has	a	fractional	part,	the	math.floor	method	rounds	the	number	down.Here	is	a	step-by-step	example	of	rounding	a	number	down	to	the	nearest	0.5.main.pyCopied!import	math	print(5.9	*	2)	#	฀		11.8	print(5.1	*	2)	#	฀		10.2	print(math.floor(5.9	*	2))	#	฀		11	print(math.floor(5.1	*	2))	#	฀		10
print(math.floor(5.9	*	2)	/	2)	#	฀		5.5	print(math.floor(5.1	*	2)	/	2)	#	฀		5.0	This	is	a	two-step	process:Multiply	the	number	by	2	and	round	the	result	down	to	the	nearest	integer.Divide	the	result	by	2	to	get	the	number	rounded	down	to	the	nearest	0.5.#	Table	of	Contents#	Round	a	number	to	the	nearest	5	in	PythonTo	round	a	number	to	the	nearest
5:Call	the	round()	function	passing	it	the	number	divided	by	5.Multiply	the	result	by	5.The	result	of	the	calculation	is	the	number	rounded	to	the	nearest	5.main.pyCopied!import	math	#	฀	Round	number	to	nearest	5	def	round_to_nearest_5(num):	return	round(num	/	5)	*	5	print(round_to_nearest_5(2))	#	฀		0	print(round_to_nearest_5(8))	#	฀		10
print(round_to_nearest_5(26))	#	฀		25	#	--------------------------------------	#	฀	Round	number	UP	to	nearest	5	def	round_up_to_nearest_5(num):	return	math.ceil(num	/	5)	*	5	print(round_up_to_nearest_5(23))	#	฀		25	print(round_up_to_nearest_5(57))	#	฀		60	#	--------------------------------------	#	฀	Round	number	DOWN	to	nearest	5	def	round_down_to_nearest_5(num):
return	math.floor(num	/	5)	*	5	print(round_down_to_nearest_5(121))	#	฀		120	print(round_down_to_nearest_5(129))	#	฀		125	The	code	for	this	article	is	available	on	GitHubWe	used	the	round()	function	to	round	a	number	to	the	nearest	5.When	passed	a	single	argument,	the	round	function	rounds	to	the	nearest	integer.main.pyCopied!print(round(14.4))
#	฀		14	print(round(14.6))	#	฀		15	Here	is	a	step-by-step	example	of	rounding	a	number	up	to	the	nearest	five.main.pyCopied!print(24	/	5)	#	฀		4.8	print(38	/	5)	#	฀		7.6	print(round(24	/	5))	#	฀		5	print(round(38	/	5))	#	฀		8	print(round(24	/	5)	*	5)	#	฀		25	print(round(38	/	5)	*	5)	#	฀		40	This	is	a	two-step	process:Divide	the	number	by	5	and	round	the	result
to	the	nearest	integer.Multiply	the	result	by	5	to	get	the	number	rounded	to	the	nearest	5.#	Round	a	number	Up	to	the	nearest	5	in	PythonUse	the	math.ceil()	method	to	round	a	number	up	to	the	nearest	5.main.pyCopied!import	math	def	round_up_to_nearest_5(num):	return	math.ceil(num	/	5)	*	5	print(round_up_to_nearest_5(23))	#	฀		25
print(round_up_to_nearest_5(57))	#	฀		60	The	code	for	this	article	is	available	on	GitHubThe	math.ceil()	method	returns	the	smallest	integer	greater	than	or	equal	to	the	provided	number.main.pyCopied!import	math	print(math.ceil(6.01))	#	฀		7	print(math.ceil(6.99))	#	฀		7	If	the	passed-in	number	has	a	fractional	part,	the	math.ceil	method	rounds	the
number	up.Here	is	a	step-by-step	example	of	rounding	a	number	up	to	the	nearest	five.main.pyCopied!import	math	print(142	/	5)	#	฀		28.4	print(148	/	5)	#	฀		29.6	print(math.ceil(142	/	5))	#	฀		29	print(math.ceil(148	/	5))	#	฀		30	print(math.ceil(142	/	5)	*	5)	#	฀		145	print(math.ceil(148	/	5)	*	5)	#	฀		150	This	is	a	two-step	process:Divide	the	number	by	5
and	round	the	result	up	to	the	nearest	integer.Multiply	the	result	by	5	to	get	the	number	rounded	up	to	the	nearest	5.#	Round	a	Number	Down	to	the	nearest	5	in	PythonUse	math.floor()	if	you	need	to	round	down	to	the	nearest	5.main.pyCopied!import	math	def	round_down_to_nearest_5(num):	return	math.floor(num	/	5)	*	5
print(round_down_to_nearest_5(121))	#	฀		120	print(round_down_to_nearest_5(129))	#	฀		125	The	code	for	this	article	is	available	on	GitHubThe	math.floor	method	returns	the	largest	integer	less	than	or	equal	to	the	provided	number.main.pyCopied!import	math	print(math.floor(3.99))	#	฀		3	print(math.floor(3.01))	#	฀		3	If	the	passed-in	number	has	a
fractional	part,	the	math.floor	method	rounds	the	number	down.Here	is	a	step-by-step	example	of	rounding	a	number	down	to	the	nearest	5.main.pyCopied!import	math	print(49	/	5)	#	฀		9.8	print(56	/	5)	#	฀		11.2	print(math.floor(49	/	5))	#	฀		9	print(math.floor(56	/	5))	#	฀		11	print(math.floor(49	/	5)	*	5)	#	฀		45	print(math.floor(56	/	5)	*	5)	#	฀		55	This	is	a
two-step	process:Divide	the	number	by	5	and	round	the	result	down	to	the	nearest	integer.Multiply	the	result	by	5	to	get	the	number	rounded	down	to	the	nearest	5.#	Table	of	Contents#	Round	a	Number	to	the	nearest	10	in	PythonUse	the	round()	function	to	round	a	number	to	the	nearest	10.main.pyCopied!import	math	#		Round	number	to	nearest
10	num_1	=	6	result_1	=	round(num_1,	-1)	print(result_1)	#	฀		10	num_2	=	4	result_2	=	round(num_2,	-1)	print(result_2)	#	฀		0	#	--------------------------------------	#	฀	Round	number	UP	to	nearest	10	def	round_up_to_nearest_10(num):	return	math.ceil(num	/	10)	*	10	print(round_up_to_nearest_10(3))	#	฀		10	print(round_up_to_nearest_10(1))	#	฀		10	#	---------------
-----------------------	#	฀	Round	number	DOWN	to	nearest	10	def	round_down_to_nearest_10(num):	return	math.floor(num	/	10)	*	10	print(round_down_to_nearest_10(19))	#	฀		10	print(round_down_to_nearest_10(27))	#	฀		20	The	code	for	this	article	is	available	on	GitHubWe	used	the	round()	function	to	round	a	number	to	the	nearest	10.The	round()	function
takes	the	following	2	parameters:NameDescriptionnumberthe	number	to	round	to	ndigits	precision	after	the	decimalndigitsthe	number	of	digits	after	the	decimal,	the	number	should	have	after	the	operation	(optional)When	ndigits	is	a	negative	number,	the	round()	function	rounds	to	the	left	of	the	decimal.If	ndigits	is	-1,	it	rounds	to	the	closest
multiple	of	10.	When	ndigits	is	-2,	the	function	rounds	to	the	nearest	100,	etc.main.pyCopied!print(round(157,	-1))	#	฀		160	print(round(157,	-2))	#	฀		200	#	Round	a	Number	Up	to	the	nearest	10	in	PythonUse	the	math.ceil()	method	to	round	up	to	the	nearest	10.main.pyCopied!import	math	def	round_up_to_nearest_10(num):	return	math.ceil(num	/	10)
*	10	print(round_up_to_nearest_10(3))	#	฀		10	print(round_up_to_nearest_10(1))	#	฀		10	print(round_up_to_nearest_10(21))	#	฀		30	The	math.ceil	method	returns	the	smallest	integer	greater	than	or	equal	to	the	provided	number.main.pyCopied!import	math	print(math.ceil(5.001))	#	฀		6	print(math.ceil(5.99))	#	฀		6	If	the	passed-in	number	has	a
fractional	part,	the	math.ceil	method	rounds	the	number	up.main.pyCopied!import	math	my_num	=	math.ceil(3	/	10)	#	฀		1	print(my_num)	#	฀		1	result	=	my_num	*	10	print(result)	#	฀		10	Here	is	a	step-by-step	example	of	rounding	a	number	up	to	the	nearest	10.main.pyCopied!import	math	print(21	/	10)	#	฀		2.1	print(40	/	10)	#	฀		4.0	print(math.ceil(21
/	10))	#	฀		3	print(math.ceil(40	/	10))	#	฀		4	print(math.ceil(21	/	10)	*	10)	#	฀		30	print(math.ceil(40	/	10)	*	10)	#	฀		40	We	first	divide	the	number	by	10	and	then	multiply	with	10	to	shift	1	decimal	place	to	the	right	and	left,	so	that	math.ceil()	works	on	the	tens.This	is	a	two-step	process:Divide	the	number	by	10	and	round	the	result	up	to	the	nearest
integer.Multiply	the	result	by	10	to	get	the	number	rounded	up	to	the	nearest	10.#	Round	a	Number	Down	to	the	nearest	10	in	PythonUse	the	math.floor()	method	to	round	down	to	the	nearest	10.main.pyCopied!import	math	def	round_down_to_nearest_10(num):	return	math.floor(num	/	10)	*	10	print(round_down_to_nearest_10(19))	#	฀		10
print(round_down_to_nearest_10(27))	#	฀		20	print(round_down_to_nearest_10(42))	#	฀		40	The	math.floor	method	returns	the	largest	integer	less	than	or	equal	to	the	provided	number.main.pyCopied!import	math	print(math.floor(3.999))	#	฀		3	print(math.floor(3.001))	#	฀		3	If	the	passed-in	number	has	a	fractional	part,	the	math.floor	method	rounds
the	number	down.Here	is	a	step-by-step	example	of	rounding	a	number	down	to	the	nearest	10.main.pyCopied!import	math	print(34	/	10)	#	฀		3.4	print(50	/	10)	#	฀		5.0	print(math.floor(34	/	10))	#	฀		3	print(math.floor(50	/	10))	#	฀		5	print(math.floor(34	/	10)	*	10)	#	฀		30	print(math.floor(50	/	10)	*	10)	#	฀		50	We	first	divide	the	number	by	10	and	then
multiply	with	10	to	shift	1	decimal	place	to	the	right	and	left,	so	that	math.floor()	works	on	the	tens.This	is	a	two-step	process:Divide	the	number	by	10	and	round	the	result	down	to	the	nearest	integer.Multiply	the	result	by	10	to	get	the	number	rounded	down	to	the	nearest	10.#	Table	of	Contents#	Round	a	number	to	the	nearest	100	in	PythonUse
the	round()	function	if	you	need	to	round	a	number	to	the	nearest	100.main.pyCopied!import	math	#	฀	Round	number	to	nearest	100	num_1	=	237	result_1	=	round(num_1,	-2)	print(result_1)	#	฀		200	num_2	=	278	result_2	=	round(num_2,	-2)	print(result_2)	#	฀		300	#	--------------------------------------	#	฀	Round	number	UP	to	nearest	100	def
round_up_to_nearest_100(num):	return	math.ceil(num	/	100)	*	100	print(round_up_to_nearest_100(311))	#	฀		400	print(round_up_to_nearest_100(1))	#	฀		100	#	--------------------------------------	#	฀	Round	number	DOWN	to	nearest	100	def	round_down_to_nearest_100(num):	return	math.floor(num	/	100)	*	100	print(round_down_to_nearest_100(546))	#	฀		500
print(round_down_to_nearest_100(599))	#	฀		500	The	code	for	this	article	is	available	on	GitHubWe	used	the	round()	function	to	round	a	number	to	the	nearest	100.The	round()	function	takes	the	following	2	parameters:NameDescriptionnumberthe	number	to	round	to	ndigits	precision	after	the	decimalndigitsthe	number	of	digits	after	the	decimal,	the
number	should	have	after	the	operation	(optional)When	ndigits	is	a	negative	number,	the	round()	function	rounds	to	the	left	of	the	decimal.If	ndigits	is	-1,	it	rounds	to	the	closest	multiple	of	10.	When	ndigits	is	-2,	the	function	rounds	to	the	nearest	100,	etc.main.pyCopied!print(round(346,	-1))	#	฀		350	print(round(346,	-2))	#	฀		300	#	Round	a	number
Up	to	the	nearest	100	in	PythonUse	the	math.ceil()	method	if	you	need	to	round	a	number	up	to	the	nearest	100.main.pyCopied!import	math	def	round_up_to_nearest_100(num):	return	math.ceil(num	/	100)	*	100	print(round_up_to_nearest_100(311))	#	฀		400	print(round_up_to_nearest_100(1))	#	฀		100	The	math.ceil	method	returns	the	smallest	integer
greater	than	or	equal	to	the	provided	number.main.pyCopied!import	math	print(math.ceil(123.001))	#	฀		124	print(math.ceil(123.999))	#	฀		124	If	the	passed-in	number	has	a	fractional	part,	the	math.ceil	method	rounds	the	number	up.Here	is	a	step-by-step	example	of	rounding	a	number	up	to	the	nearest	hundred.main.pyCopied!import	math	print(346
/	100)	#	฀		3.46	print(600	/	100)	#	฀		6.0	print(math.ceil(346	/	100))	#	฀		4	print(math.ceil(600	/	100))	#	฀		6	print(math.ceil(346	/	100)	*	100)	#	฀		400	print(math.ceil(600	/	100)	*	100)	#	฀		600	We	first	divide	the	number	by	100	and	then	multiply	with	100	to	shift	2	decimal	places	to	the	right	and	left,	so	that	math.ceil()	works	on	the	hundreds.This	is	a
two-step	process:Divide	the	number	by	100	and	round	the	result	up	to	the	nearest	integer.Multiply	the	result	by	100	to	get	the	number	rounded	up	to	the	nearest	100.#	Round	a	Number	Down	to	the	nearest	100	in	PythonUse	the	math.floor()	method	to	round	a	number	down	to	the	nearest	100.main.pyCopied!import	math	def
round_down_to_nearest_100(num):	return	math.floor(num	/	100)	*	100	print(round_down_to_nearest_100(546))	#	฀		500	print(round_down_to_nearest_100(599))	#	฀		500	print(round_down_to_nearest_100(775))	#	฀		700	The	math.floor	method	returns	the	largest	integer	less	than	or	equal	to	the	provided	number.main.pyCopied!import	math
print(math.floor(15.001))	#	฀		15	print(math.floor(15.999))	#	฀		15	If	the	passed-in	number	has	a	fractional	part,	the	math.floor	method	rounds	the	number	down.Here	is	a	step-by-step	example	of	rounding	a	number	down	to	the	nearest	100.main.pyCopied!print(488	/	100)	#	฀		4.88	print(251	/	100)	#	฀		2.51	print(math.floor(488	/	100))	#	฀		4
print(math.floor(251	/	100))	#	฀		2	print(math.floor(488	/	100)	*	100)	#	฀		400	print(math.floor(251	/	100)	*	100)	#	฀		200	We	first	divide	the	number	by	100	and	then	multiply	with	100	to	shift	2	decimal	places	to	the	right	and	left,	so	that	math.floor()	works	on	the	hundreds.This	is	a	two-step	process:Divide	the	number	by	100	and	round	the	result	down
to	the	nearest	integer.Multiply	the	result	by	100	to	get	the	number	rounded	down	to	the	nearest	100.#	Table	of	Contents#	Round	a	number	to	the	nearest	500	in	PythonUse	the	round()	function	to	round	a	number	to	the	nearest	500.main.pyCopied!import	math	#		Round	number	to	nearest	500	def	round_to_nearest_500(num):	return	round(num	/	500)
*	500	print(round_to_nearest_500(777))	#	฀		1000	print(round_to_nearest_500(1))	#	฀		0	print(round_to_nearest_500(1400))	#	฀		1500	#	--------------------------------------	#	฀	Round	number	UP	to	nearest	500	def	round_up_to_nearest_500(num):	return	math.ceil(num	/	500)	*	500	print(round_up_to_nearest_500(640))	#	฀		1000	print(round_up_to_nearest_500(1))
#	฀		500	#	--------------------------------------	#	฀	Round	number	DOWN	to	nearest	500	def	round_down_to_nearest_500(num):	return	math.floor(num	/	500)	*	500	print(round_down_to_nearest_500(999))	#	฀		500	print(round_down_to_nearest_500(1840))	#	฀		1500	The	code	for	this	article	is	available	on	GitHubWe	used	the	round()	function	to	round	a	number	to

the	nearest	500.When	passed	a	single	argument,	the	round	function	rounds	to	the	nearest	integer.main.pyCopied!print(round(13.4))	#	฀		13	print(round(13.6))	#	฀		14	Here	is	a	step-by-step	example	of	rounding	a	number	up	to	the	nearest	five	hundred.main.pyCopied!print(1750	/	500)	#	฀		3.5	print(1400	/	500)	#	฀		2.8	print(round(1750	/	500))	#	฀		4
print(round(1400	/	500))	#	฀		3	print(round(1750	/	500)	*	500)	#	฀		2000	print(round(1400	/	500)	*	500)	#	฀		1500	This	is	a	two-step	process:Divide	the	number	by	500	and	round	the	result	to	the	nearest	integer.Multiply	the	result	by	500	to	get	the	number	rounded	to	the	nearest	500.#	Round	a	number	Up	to	the	nearest	500	in	PythonUse	the	math.ceil()
method	to	round	a	number	up	to	the	nearest	500.main.pyCopied!import	math	def	round_up_to_nearest_500(num):	return	math.ceil(num	/	500)	*	500	print(round_up_to_nearest_500(640))	#	฀		1000	print(round_up_to_nearest_500(1))	#	฀		500	The	math.ceil	method	returns	the	smallest	integer	greater	than	or	equal	to	the	provided
number.main.pyCopied!import	math	print(math.ceil(456.001))	#	฀		457	print(math.ceil(456.999))	#	฀		457	If	the	passed-in	number	has	a	fractional	part,	the	math.ceil	method	rounds	the	number	up.Here	is	a	step-by-step	example	of	rounding	a	number	up	to	the	nearest	five	hundred.main.pyCopied!import	math	print(1346	/	500)	#	฀		2.692	print(1600	/
500)	#	฀		3.2	print(math.ceil(1346	/	500))	#	฀		3	print(math.ceil(1600	/	500))	#	฀		4	print(math.ceil(1346	/	500)	*	500)	#	฀		1500	print(math.ceil(1600	/	500)	*	500)	#	฀		2000	This	is	a	two-step	process:Divide	the	number	by	500	and	round	the	result	up	to	the	nearest	integer.Multiply	the	result	by	500	to	get	the	number	rounded	up	to	the	nearest	500.#
Round	a	Number	Down	to	the	nearest	500	in	PythonUse	the	math.floor()	method	to	round	a	number	down	to	the	nearest	500.main.pyCopied!import	math	def	round_down_to_nearest_500(num):	return	math.floor(num	/	500)	*	500	print(round_down_to_nearest_500(999))	#	฀		500	print(round_down_to_nearest_500(1840))	#	฀		1500
print(round_down_to_nearest_500(2840))	#	฀		2500	The	math.floor	method	returns	the	largest	integer	less	than	or	equal	to	the	provided	number.main.pyCopied!import	math	print(math.floor(25.999))	#	฀		25	print(math.floor(25.001))	#	฀		25	If	the	passed-in	number	has	a	fractional	part,	the	math.floor	method	rounds	the	number	down.Here	is	a	step-by-
step	example	of	rounding	a	number	down	to	the	nearest	500.main.pyCopied!import	math	print(4880	/	500)	#	฀		9.76	print(2510	/	500)	#	฀		5.02	print(math.floor(4880	/	500))	#	฀		9	print(math.floor(2510	/	500))	#	฀		5	print(math.floor(4880	/	500)	*	500)	#	฀		4500	print(math.floor(2510	/	500)	*	500)	#	฀		2500	This	is	a	two-step	process:Divide	the	number	by
500	and	round	the	result	down	to	the	nearest	integer.Multiply	the	result	by	500	to	get	the	number	rounded	down	to	the	nearest	500.#	Table	of	Contents#	Round	a	number	to	the	nearest	1000	in	PythonUse	the	round()	function	to	round	a	number	to	the	nearest	1000.main.pyCopied!import	math	#		Round	number	to	nearest	1000	num_1	=	4678
result_1	=	round(num_1,	-3)	print(result_1)	#	฀		5000	num_2	=	4432	result_2	=	round(num_2,	-3)	print(result_2)	#	฀		4000	#	--------------------------------------	#	฀	Round	number	UP	to	nearest	1000	def	round_up_to_nearest_1000(num):	return	math.ceil(num	/	1000)	*	1000	print(round_up_to_nearest_1000(3100))	#	฀		4000	print(round_up_to_nearest_1000(1))	#
฀		1000	#	--------------------------------------	#	฀	Round	number	DOWN	to	nearest	1000	def	round_down_to_nearest_1000(num):	return	math.floor(num	/	1000)	*	1000	print(round_down_to_nearest_1000(5999))	#	฀		5000	print(round_down_to_nearest_1000(5004))	#	฀		5000	The	code	for	this	article	is	available	on	GitHubIf	you	need	to	round	a	number	to	the
nearest	500,	scroll	down	to	the	relevant	subheading.We	used	the	round()	function	to	round	a	number	to	the	nearest	1000.The	round	function	takes	the	following	2	parameters:NameDescriptionnumberthe	number	to	round	to	ndigits	precision	after	the	decimalndigitsthe	number	of	digits	after	the	decimal,	the	number	should	have	after	the	operation
(optional)When	ndigits	is	a	negative	number,	the	round()	function	rounds	to	the	left	of	the	decimal.If	ndigits	is	-1,	the	function	rounds	to	the	closest	multiple	of	10.If	ndigits	is	-2,	it	rounds	to	the	nearest	100.If	ndigits	is	-3,	it	rounds	to	the	nearest	1000,	etc.main.pyCopied!print(round(3456,	-1))	#	฀		3460	print(round(3456,	-2))	#	฀		3500
print(round(3456,	-3))	#	฀		3000	#	Round	a	number	Up	to	the	nearest	1000	in	PythonUse	the	math.ceil()	method	to	round	a	number	up	to	the	nearest	1000.main.pyCopied!import	math	def	round_up_to_nearest_1000(num):	return	math.ceil(num	/	1000)	*	1000	print(round_up_to_nearest_1000(3100))	#	฀		4000	print(round_up_to_nearest_1000(1))	#	฀	
1000	print(round_up_to_nearest_1000(2350))	#	฀		3000	The	math.ceil	method	returns	the	smallest	integer	greater	than	or	equal	to	the	provided	number.main.pyCopied!import	math	print(math.ceil(1234.001))	#	฀		1235	print(math.ceil(1234.999))	#	฀		1235	If	the	passed-in	number	has	a	fractional	part,	the	math.ceil	method	rounds	the	number	up.Here
is	a	step-by-step	example	of	rounding	a	number	up	to	the	nearest	thousand.main.pyCopied!import	math	print(4258	/	1000)	#	฀		4.258	print(5600	/	1000)	#	฀		5.6	print(math.ceil(4258	/	1000))	#	฀		5	print(math.ceil(5600	/	1000))	#	฀		6	print(math.ceil(4258	/	1000)	*	1000)	#	฀		5000	print(math.ceil(5600	/	1000)	*	1000)	#	฀		6000	We	first	divide	the	number
by	1000	and	then	multiply	with	1000	to	shift	3	decimal	places	to	the	right	and	left,	so	that	math.ceil()	works	on	the	thousands.This	is	a	two-step	process:Divide	the	number	by	1000	and	round	the	result	up	to	the	nearest	integer.Multiply	the	result	by	1000	to	get	the	number	rounded	up	to	the	nearest	1000.#	Round	a	Number	Down	to	the	nearest	1000
in	PythonUse	the	math.floor()	method	to	round	a	number	down	to	the	nearest	1000.main.pyCopied!import	math	def	round_down_to_nearest_1000(num):	return	math.floor(num	/	1000)	*	1000	print(round_down_to_nearest_1000(5999))	#	฀		5000	print(round_down_to_nearest_1000(5004))	#	฀		5000	print(round_down_to_nearest_1000(7900))	#	฀		7000
The	math.floor	method	returns	the	largest	integer	less	than	or	equal	to	the	provided	number.main.pyCopied!import	math	print(math.floor(13.999))	#	฀		13	print(math.floor(13.001))	#	฀		13	If	the	passed-in	number	has	a	fractional	part,	the	math.floor	method	rounds	the	number	down.Here	is	a	step-by-step	example	of	rounding	a	number	down	to	the
nearest	1000.main.pyCopied!import	math	print(5900	/	1000)	#	฀		5.9	print(4300	/	1000)	#	฀		4.3	print(math.floor(5900	/	1000))	#	฀		5	print(math.floor(4300	/	1000))	#	฀		4	print(math.floor(5900	/	1000)	*	1000)	#	฀		5000	print(math.floor(4300	/	1000)	*	1000)	#	฀		4000	The	code	for	this	article	is	available	on	GitHubWe	first	divide	the	number	by	1000	and
then	multiply	with	1000	to	shift	3	decimal	places	to	the	right	and	left,	so	that	math.floor()	works	on	the	thousands.This	is	a	two-step	process:Divide	the	number	by	1000	and	round	the	result	down	to	the	nearest	integer.Multiply	the	result	by	1000	to	get	the	number	rounded	down	to	the	nearest	1000.#	Round	a	number	to	the	nearest	even	number	in
PythonUse	the	round()	function	to	round	a	number	to	the	nearest	even	number.main.pyCopied!import	math	#	฀	round	number	to	nearest	even	number	def	round_to_nearest_even_number(num):	return	round(num	/	2)	*	2	print(round_to_nearest_even_number(3.1))	#	฀		4	print(round_to_nearest_even_number(8.6))	#	฀		8	#	---
#	฀	round	a	number	UP	to	the	nearest	even	number	def	round_up_to_nearest_even_number(num):	return	math.ceil(num	/	2)	*	2	print(round_up_to_nearest_even_number(3.1))	#	฀		4	print(round_up_to_nearest_even_number(8.6))	#	฀		10	#	---	#	฀	round	a	number	DOWN	to	the	nearest	even	number	def
round_down_to_nearest_even_number(num):	return	math.floor(num	/	2)	*	2	print(round_down_to_nearest_even_number(3.1))	#	฀		2	print(round_down_to_nearest_even_number(8.6))	#	฀		8	The	code	for	this	article	is	available	on	GitHubWe	used	the	round()	function	to	round	a	number	to	the	nearest	even	integer.When	passed	a	single	argument,	the
round()	function	rounds	to	the	nearest	integer.main.pyCopied!print(round(22.4))	#	฀		22	print(round(22.6))	#	฀		23	This	is	a	two-step	process:Divide	the	number	by	2	and	round	the	result	to	the	nearest	integer.Multiply	the	result	by	2	to	get	the	nearest	even	integer.#	Round	a	number	Up	to	the	nearest	even	number	in	PythonUse	the	math.ceil()	method
to	round	a	number	up	to	the	nearest	even	number.main.pyCopied!import	math	def	round_up_to_nearest_even_number(num):	return	math.ceil(num	/	2)	*	2	print(round_up_to_nearest_even_number(3.1))	#	฀		4	print(round_up_to_nearest_even_number(8.6))	#	฀		10	The	math.ceil	method	returns	the	smallest	integer	greater	than	or	equal	to	the	provided
number.main.pyCopied!import	math	print(math.ceil(14.01))	#	฀		15	print(math.ceil(14.99))	#	฀		15	If	the	passed-in	number	has	a	fractional	part,	the	math.ceil	method	rounds	the	number	up.This	is	a	two-step	process:Divide	the	number	by	2	and	round	the	result	up	to	the	nearest	integer.Multiply	the	result	by	2	to	get	the	next	even	number.#	Round	a
number	Down	to	the	nearest	even	number	in	PythonUse	the	math.floor()	method	to	round	a	number	down	to	the	nearest	even	number.main.pyCopied!import	math	def	round_down_to_nearest_even_number(num):	return	math.floor(num	/	2)	*	2	print(round_down_to_nearest_even_number(3.1))	#	฀		2	print(round_down_to_nearest_even_number(8.6))	#	฀	
8	The	code	for	this	article	is	available	on	GitHubThe	math.floor()	method	returns	the	largest	integer	less	than	or	equal	to	the	provided	number.main.pyCopied!import	math	print(math.floor(9.99))	#	฀		9	print(math.floor(9.01))	#	฀		9	If	the	passed-in	number	has	a	fractional	part,	the	math.floor	method	rounds	the	number	down.This	is	a	two-step
process:Divide	the	number	by	2	and	round	the	result	down	to	the	nearest	integer.Multiply	the	result	by	2	to	get	the	number	rounded	down	to	the	nearest	even	integer.I've	also	written	an	article	on	how	to	round	a	float	to	N	decimal	places.#	Additional	ResourcesYou	can	learn	more	about	the	related	topics	by	checking	out	the	following	tutorials:

