
	

https://muxufagidagiti.maxudijuz.com/464080784671469856195719528294974150727388?sotififenuxupugekototapomifuxowubezejopomujeworexaluwazoxefirekotuwaworamirepoxawejonakuluz=zimuredejosofujowepiwodevixisefasejigonozorekigipenofadorovadanogasododidotusiresasokikunuxuxizazezutetudoxiraxobopazemoperitixejibenavegofofutivuterutiwidirelulatuburolafuxasutasaluligogisasisikusunabo&utm_term=ruby+moon+summary&gikosolusijedokabafaguzasujirasukimeseterezefubineloruxajopabavejuxusij=rafewemebuvovilapekotizawifowidulebudadurodexerululanapomubofabijedoburujopologidegodezerurelarixikapukevejujefagebabolivijawigufimufisawaboda

Ruby	3.4.4	已发布。	阅读全文...	由	k0kubun	发表于	2025-05-14	在	net-imap	gem	中存在一个可能造成	DoS	的漏洞。此漏洞的	CVE	编号为	CVE-2025-43857。我们建议您更新	net-imap	gem。	阅读全文...	由	nevans	发表于	2025-04-28	我们很高兴地宣布	Ruby	3.5.0-preview1	已发布。Ruby	3.5	除了将	Unicode	版本更新到	15.1.0外，还有一些其他变更。	阅读全文...	由	naruse	发表于
2025-04-18	Ruby	3.4.3	已发布。	阅读全文...	由	k0kubun	发表于	2025-04-14	Posted	by	k0kubun	on	3	Sep	2024	Ruby	3.3.5	has	been	released.	This	is	a	routine	update	that	includes	minor	bug	fixes.	We	recommend	upgrading	your	Ruby	version	at	your	earliest	convenience.	For	more	details,	please	refer	to	the	GitHub	release	notes.	Release	Schedule	As
previously	announced,	we	intend	to	release	the	latest	stable	Ruby	version	(currently	Ruby	3.3)	every	2	months	following	a	.1	release.	We	expect	to	release	Ruby	3.3.6	on	November	5th	and	Ruby	3.3.7	on	January	7th.	If	any	significant	changes	arise	that	impact	a	large	number	of	users,	we	may	release	a	new	version	earlier	than	scheduled.	Download
SIZE:	22129139	SHA1:	59444476bbe9e789fc777d8fb4dd456bc057604f	SHA256:	3781a3504222c2f26cb4b9eb9c1a12dbf4944d366ce24a9ff8cf99ecbce75196	SHA512:	5c482059628ef9de5d8a6ad4751f8043f2fc2b159b768265be7f3ee0574ad51d9500ee4fc9146c5978fbd51313039c3de39e7b7a4dedc9bcd5d09a41a713f1a7	SIZE:	16403660	SHA1:
692bc3188bdb9ec30b8672543961b011d699590a	SHA256:	51aec7ea89b46125a2c9adc6f36766b65023d47952b916b1aed300ddcc042359	SHA512:	dd5c6a7f74854e143e0ca46b9d7c0d1983fc4886f5f733cd108345dbf4b21f61ad978ad6806e05a57b7af28fd9216dd38d7145808188bbb3695a7f3a4eda3883	SIZE:	27020194	SHA1:
ccb32746aef491ce05be42218301e2c47185e5fc	SHA256:	d3c13e124707494935d00ebc5c7983b0252bc13de49223fd31104ba5467a057a	SHA512:	bf83af835a74283aff21042538ee1f1eb70ff12dac1edd4672d787547cd29cb7b69a9299682f89c8499eb610737b10a7fc03eca038574cb4ba565205d96b0016	Release	Comment	Many	committers,	developers,
and	users	who	provided	bug	reports	helped	us	make	this	release.	Thanks	for	their	contributions.	Guides,	tutorials,	and	reference	material	to	help	you	learn	more	about	Ruby	Installing	Ruby	Although	you	can	easily	try	Ruby	in	your	browser,	you	can	also	read	the	installation	guide	for	help	on	installing	Ruby.	Official	Ruby	Documentation	docs.ruby-
lang.org/en:	List	of	documentation	for	all	Ruby	versions	released	after	2.1.	docs.ruby-lang.org/en/3.4:	Documentation	for	Ruby	3.4.	docs.ruby-lang.org/en/master:	Documentation	for	Ruby’s	master	branch.	C	Extension	Guide:	In-depth	guide	for	creating	C	extensions	for	Ruby.	Getting	Started	Try	Ruby	You	can	try	Ruby	right	in	your	browser.	Learn	to
Program	A	wonderful	little	tutorial	by	Chris	Pine	for	programming	newbies.	If	you	don’t	know	how	to	program,	start	here.	Ruby	in	Twenty	Minutes	A	small	Ruby	tutorial	that	should	take	no	more	than	20	minutes	to	complete.	The	Odin	Project	An	open	source	full	stack	curriculum	Exercism	120	exercises	with	automatic	analysis	and	personal	mentoring.
Codecademy	Online	code	bootcamp	with	a	variety	of	topics.	Manuals	/	Books	Beginner	Programming	Ruby	3.3	The	seminal	work	on	Ruby	in	English.	Recently	updated	to	Ruby	3.3.	The	Well-Grounded	Rubyist	A	tutorial	that	begins	with	your	first	Ruby	program	and	takes	you	all	the	way	to	sophisticated	topics	like	reflection,	threading,	and	recursion.
Intermediate	Practical	OOD	in	Ruby	(POODR)	A	programmer’s	tale	about	how	to	write	object-oriented	code.	Expert	Metaprogramming	Explains	metaprogramming	in	a	down-to-earth	style.	Ruby	Under	a	Microscope	(RUM)	An	illustrated	guide	to	Ruby	internals.	Community	Documentation	These	documentation	sites	are	maintained	by	the	Ruby
community.	RubyDoc.info	The	one-stop	web	site	for	reference	documentation	about	Ruby	gems	and	GitHub-hosted	Ruby	projects.	RubyAPI.org	Easily	find	and	browse	Ruby	classes,	modules,	and	methods.	ruby-doc.org	Online	API	documentation	DevDocs.io	Online	API	documentation	Ruby	QuickRef	The	Ruby	quick	reference	rubyreferences	A	full
language	reference	+	detailed	language	changelog.	Style	Guides	rubystyle.guide	RuboCop’s	Ruby	style	guide	RuboCop	Automated	enforcement	of	their	style	guide.	Shopify	Shopify’s	Ruby	style	guide	GitLab	Gitlab’s	Ruby	style	guide	Airbnb	Airbnb’s	Ruby	style	guide	w3resource	W3’s	Ruby	style	guide	IRB	The	interactive	Ruby	Read-Eval-Print-Loop
(REPL)	Pry	An	alternative	Ruby	REPL	Rake	A	make-like	build	utility	for	Ruby.	RI	(Ruby	Information)	is	the	Ruby	command-line	utility	that	gives	fast	and	easy	on-line	access	to	Ruby	documentation.	RBS	Type	Signature	for	Ruby	TypeProf	An	experimental	type-level	Ruby	interpreter	for	testing	and	understanding	Ruby	code.	Steep	Static	type	checker	for
Ruby.	Editors	and	IDEs	For	coding	in	Ruby,	you	can	use	the	default	editor	of	your	operating	system.	By	the	way,	to	be	more	effective	in	coding,	it	is	worth	choosing	a	source	code	editor	with	basic	Ruby	support	(e.g.	syntax-highlighting,	file	browsing)	or	an	integrated	development	environment	with	advanced	features	(e.g.	code	completion,	refactoring,
testing	support).	Here	is	a	list	of	popular	editors	used	by	Rubyists,	broken	up	by	learning	curve:	All	of	these	editors	support	the	Language	Server	Protocol	(LSP),	either	by	default	or	through	their	LSP	plugins.	Shopify’s	ruby-lsp	is	one	of	the	most	popular	language	servers	for	Ruby	and	supports	all	of	the	above	editors.	Older	Reading	/	Resources	These
links	were	more	prominent	but	haven’t	been	updated	in	ages.	Ruby	Koans	The	Koans	walk	you	along	the	path	to	enlightenment	in	order	to	learn	Ruby.	The	goal	is	to	learn	the	Ruby	language,	syntax,	structure,	and	some	common	functions	and	libraries.	We	also	teach	you	culture.	Ruby	Essentials	A	free	on-line	book	designed	to	provide	a	concise	and
easy	to	follow	guide	to	learning	Ruby.	Why’s	(Poignant)	Guide	to	Ruby	An	unconventional	but	interesting	book	that	will	teach	you	Ruby	through	stories,	wit,	and	comics.	Originally	created	by	why	the	lucky	stiff,	this	guide	remains	a	classic	for	Ruby	learners.	Learn	Ruby	the	Hard	Way	A	very	good	set	of	exercises	with	explanations	that	guide	you	from
the	absolute	basics	of	Ruby	all	the	way	to	OOP	and	web	development.	Programming	Ruby	The	seminal	work	on	Ruby	in	English,	this	first	edition	of	the	Pragmatic	Programmers’	book	is	available	for	free	online.	The	Ruby	Programming	Wikibook	A	free	online	manual	with	beginner	and	intermediate	content	plus	a	thorough	language	reference.	Ruby
3.4.4	has	been	released.	Continue	Reading...	Posted	by	k0kubun	on	14	May	2025	There	is	a	possibility	for	DoS	by	in	the	net-imap	gem.	This	vulnerability	has	been	assigned	the	CVE	identifier	CVE-2025-43857.	We	recommend	upgrading	the	net-imap	gem.	Continue	Reading...	Posted	by	nevans	on	28	Apr	2025	We	are	pleased	to	announce	the	release	of
Ruby	3.5.0-preview1.	Ruby	3.5	updates	its	Unicode	version	to	15.1.0,	and	so	on.	Continue	Reading...	Posted	by	naruse	on	18	Apr	2025	Ruby	3.4.3	has	been	released.	Continue	Reading...	Posted	by	k0kubun	on	14	Apr	2025	Welcome	to	the	official	Ruby	programming	language	documentation.	String	-	Text	manipulation	and	string	utilities.	Symbol	-
Named	identifiers	inside	the	Ruby	interpreter.	Array	-	Ordered	collections	of	objects.	Hash	-	Key-value	pairs	for	efficient	data	retrieval.	Integer	-	Integer	number	class.	Float	-	Floating-point	number	class.	Enumerable	-	Collection	traversal	and	searching.	File	-	File	operations	and	handling.	IO	-	Input/output	functionality.	Time	-	Time	representation.
Regexp	-	Regular	expressions	for	pattern	matching.	Range	-	Representing	a	range	of	values.	Exception	-	Base	class	for	all	exceptions.	Thread	-	Multithreading	and	concurrency.	There	are	some	standard	libraries	included	in	Ruby	that	are	also	commonly	used,	such	as:	With	package	managers	or	third-party	tools,	you	have	plenty	of	options	to	install	and
manage	Ruby.	You	may	already	have	Ruby	installed	on	your	computer.	You	can	check	inside	a	terminal	emulator	by	typing:	ruby	-v	This	should	output	some	information	on	the	installed	Ruby	version.	Choose	Your	Installation	Method	There	are	several	ways	to	install	Ruby:	On	a	UNIX-like	operating	system,	using	your	system’s	package	manager	is
easiest.	However,	the	packaged	Ruby	version	may	not	be	the	newest	one.	Installers	can	be	used	to	install	a	specific	or	multiple	Ruby	versions.	There	is	also	an	installer	for	Windows.	Managers	help	you	to	switch	between	multiple	Ruby	versions	on	your	system.	Finally,	you	can	also	build	Ruby	from	source.	On	Windows	10,	you	can	also	use	the	Windows
Subsystem	for	Linux	to	install	one	of	the	supported	Linux	distributions	and	use	any	of	the	installation	methods	available	on	that	system.	Here	are	available	installation	methods:	Package	Management	Systems	If	you	cannot	compile	your	own	Ruby,	and	you	do	not	want	to	use	a	third-party	tool,	you	can	use	your	system’s	package	manager	to	install
Ruby.	Some	members	of	the	Ruby	community	feel	that	you	should	avoid	package	managers	to	install	Ruby	and	that	you	should	use	dedicated	tools	instead.	It	is	possible	that	major	package	managers	will	install	older	Ruby	versions	instead	of	the	latest	release.	To	use	the	latest	Ruby	release,	check	that	the	package	name	matches	its	version	number.	Or
use	a	dedicated	installer.	apt	(Debian	or	Ubuntu)	Debian	GNU/Linux	and	Ubuntu	use	the	apt	package	manager.	You	can	use	it	like	this:	$	sudo	apt-get	install	ruby-full	yum	(CentOS,	Fedora,	or	RHEL)	CentOS,	Fedora,	and	RHEL	use	the	yum	package	manager.	You	can	use	it	like	this:	$	sudo	yum	install	ruby	The	installed	version	is	typically	the	latest
version	of	Ruby	available	at	the	release	time	of	the	specific	distribution	version.	snap	(Ubuntu	or	other	Linux	distributions)	Snap	is	a	package	manager	developed	by	Canonical.	It	is	available	out-of-the-box	on	Ubuntu,	but	snap	also	works	on	many	other	Linux	distributions.	You	can	use	it	like	this:	$	sudo	snap	install	ruby	--classic	We	have	several
channels	per	Ruby	minor	series.	For	instance,	the	following	commands	switch	to	Ruby	2.3:	$	sudo	snap	switch	ruby	--channel=2.3/stable	$	sudo	snap	refresh	portage	(Gentoo)	Gentoo	uses	the	portage	package	manager.	$	sudo	emerge	dev-lang/ruby	To	install	a	specific	version,	set	RUBY_TARGETS	in	your	make.conf.	See	the	Gentoo	Ruby	Project
website	for	details.	pacman	(Arch	Linux)	Arch	Linux	uses	a	package	manager	named	pacman.	To	get	Ruby,	just	do	this:	$	sudo	pacman	-S	ruby	This	should	install	the	latest	stable	Ruby	version.	Homebrew	(macOS)	Ruby	versions	2.0	and	above	are	included	by	default	in	macOS	releases	since	at	least	El	Capitan	(10.11).	Homebrew	is	a	commonly	used
package	manager	on	macOS.	Installing	Ruby	using	Homebrew	is	easy:	$	brew	install	ruby	This	should	install	the	latest	Ruby	version.	FreeBSD	FreeBSD	offers	both	pre-packaged	and	source-based	methods	to	install	Ruby.	Prebuilt	packages	can	be	installed	via	the	pkg	tool:	$	pkg	install	ruby	A	source-based	method	can	be	used	to	install	Ruby	using	the
Ports	Collection.	This	is	useful	if	you	want	to	customize	the	build	configuration	options.	More	information	about	Ruby	and	its	surrounding	ecosystem	on	FreeBSD	can	be	found	on	the	FreeBSD	Ruby	Project	website.	OpenBSD	OpenBSD	as	well	as	its	distribution	adJ	has	packages	for	the	three	major	versions	of	Ruby.	The	following	command	allows	you
to	see	the	available	versions	and	to	install	one:	$	doas	pkg_add	ruby	You	can	install	multiple	major	versions	side	by	side,	because	their	binaries	have	different	names	(e.g.	ruby27,	ruby26).	The	HEAD	branch	of	the	OpenBSD	ports	collection	might	have	the	most	recent	version	of	Ruby	for	this	platform	some	days	after	it	is	released,	see	directory
lang/ruby	in	the	most	recent	ports	collection.	Ruby	on	OpenIndiana	To	install	Ruby	on	OpenIndiana,	please	use	the	Image	Packaging	System	(IPS)	client.	This	will	install	the	Ruby	binaries	and	RubyGems	directly	from	the	OpenIndiana	repositories.	It’s	easy:	$	pkg	install	runtime/ruby	However,	the	third-party	tools	might	be	a	good	way	to	obtain	the
latest	version	of	Ruby.	Windows	Package	Manager	On	Windows,	you	can	use	the	Windows	Package	Manager	CLI	to	install	Ruby:	>	winget	install	RubyInstallerTeam.Ruby.{MAJOR}.{MINOR}	#	Example	>	winget	install	RubyInstallerTeam.Ruby.3.2	#	To	see	all	versions	available	>	winget	search	RubyInstallerTeam.Ruby	#	Note:	if	you	are	installing
ruby	for	projects,	you	may	want	to	install	RubyWithDevKit	>	winget	install	RubyInstallerTeam.RubyWithDevKit.3.2	Chocolatey	package	manager	for	Windows	Also	on	Windows,	you	can	use	the	Chocolatey	Package	Manager	to	install	Ruby:	>	choco	install	ruby	It	will	reuse	existing	msys2,	or	install	own	for	complete	Ruby	development	environment
Other	Distributions	On	other	systems,	you	can	search	the	package	repository	of	your	Linux	distribution’s	manager	for	Ruby.	Alternatively,	you	can	use	a	third-party	installer.	Installers	If	the	version	of	Ruby	provided	by	your	system	or	package	manager	is	out	of	date,	a	newer	one	can	be	installed	using	a	third-party	installer.	Some	installers	allow	you	to
install	multiple	versions	on	the	same	system;	associated	managers	can	help	to	switch	between	the	different	Rubies.	If	you	are	planning	to	use	RVM	as	a	version	manager	you	don’t	need	a	separate	installer,	it	comes	with	its	own.	ruby-build	ruby-build	is	a	plugin	for	rbenv	that	allows	you	to	compile	and	install	different	versions	of	Ruby.	ruby-build	can
also	be	used	as	a	standalone	program	without	rbenv.	It	is	available	for	macOS,	Linux,	and	other	UNIX-like	operating	systems.	ruby-install	ruby-install	allows	you	to	compile	and	install	different	versions	of	Ruby	into	arbitrary	directories.	chruby	is	a	complimentary	tool	used	to	switch	between	Ruby	versions.	It	is	available	for	macOS,	Linux,	and	other
UNIX-like	operating	systems.	RubyInstaller	On	Windows,	RubyInstaller	gives	you	everything	you	need	to	set	up	a	full	Ruby	development	environment.	Just	download	it,	run	it,	and	you	are	done!	Ruby	Stack	If	you	are	installing	Ruby	in	order	to	use	Ruby	on	Rails,	you	can	use	the	following	installer:	Bitnami	Ruby	Stack	provides	a	complete	development
environment	for	Rails.	It	supports	macOS,	Linux,	Windows,	virtual	machines,	and	cloud	images.	Managers	Many	Rubyists	use	Ruby	managers	to	manage	multiple	Rubies.	They	allow	easy	or	even	automatic	switching	between	Ruby	versions	depending	on	the	project	and	other	advantages	but	are	not	officially	supported.	You	can	however	find	support
within	their	respective	communities.	asdf-vm	asdf-vm	is	an	extendable	version	manager	that	can	manage	multiple	language	runtime	versions	on	a	per-project	basis.	You	will	need	the	asdf-ruby	plugin	(which	in	turn	uses	ruby-build)	to	install	Ruby.	chruby	chruby	allows	you	to	switch	between	multiple	Rubies.	It	can	manage	Rubies	installed	by	ruby-
install	or	even	built	from	source.	mise-en-place	mise-en-place	allows	you	to	switch	between	multiple	Rubies	without	requiring	additional	tools.	It	manages	installations	automatically	and	includes	a	gem	backend	to	manage	versions	of	CLIs	written	in	Ruby.	It	supports	UNIX-like	and	Windows	operating	systems.	rbenv	rbenv	allows	you	to	manage
multiple	installations	of	Ruby.	While	it	can’t	install	Ruby	by	default,	its	ruby-build	plugin	can.	Both	tools	are	available	for	macOS,	Linux,	or	other	UNIX-like	operating	systems.	rbenv	for	Windows	rbenv	for	Windows	allows	you	to	install	and	manage	multiple	installations	of	Ruby	on	Windows.	It’s	written	in	PowerShell	thus	providing	a	native	way	to	use
Ruby	for	Windows	users.	Besides,	the	command	line	interface	is	compatible	with	rbenv	on	UNIX-like	systems.	RVM	(“Ruby	Version	Manager”)	RVM	allows	you	to	install	and	manage	multiple	installations	of	Ruby	on	your	system.	It	can	also	manage	different	gemsets.	It	is	available	for	macOS,	Linux,	or	other	UNIX-like	operating	systems.	RVM	4
Windows	RVM	4	Windows	allows	you	to	install	and	manage	multiple	installations	of	Ruby	on	Windows.	It	is	a	clone	of	the	original	RVM	and	supports	the	classic	command	line	as	well	as	Powershell	by	providing	the	same	command	line	interface	as	the	original	RVM.	uru	Uru	is	a	lightweight,	multi-platform	command	line	tool	that	helps	you	to	use
multiple	Rubies	on	macOS,	Linux,	or	Windows	systems.	Building	from	Source	Of	course,	you	can	install	Ruby	from	source.	Download	and	unpack	a	tarball,	then	just	do	this:	$./configure	$	make	$	sudo	make	install	By	default,	this	will	install	Ruby	into	/usr/local.	To	change,	pass	the	--prefix=DIR	option	to	the	./configure	script.	You	can	find	more
information	about	building	from	source	in	the	Building	Ruby	instructions.	Using	the	third-party	tools	or	package	managers	might	be	a	better	idea,	though,	because	the	installed	Ruby	won’t	be	managed	by	any	tools.	Wondering	why	Ruby	is	so	popular?	Its	fans	call	it	a	beautiful,	artful	language.	And	yet,	they	say	it’s	handy	and	practical.	What	gives?
The	Ideals	of	Ruby’s	Creator	Ruby	is	a	language	of	careful	balance.	Its	creator,	Yukihiro	“Matz”	Matsumoto,	blended	parts	of	his	favorite	languages	(Perl,	Smalltalk,	Eiffel,	Ada,	and	Lisp)	to	form	a	new	language	that	balanced	functional	programming	with	imperative	programming.	He	has	often	said	that	he	is	“trying	to	make	Ruby	natural,	not	simple,”
in	a	way	that	mirrors	life.	Building	on	this,	he	adds:	Ruby	is	simple	in	appearance,	but	is	very	complex	inside,	just	like	our	human	body1.	About	Ruby’s	Growth	Since	its	public	release	in	1995,	Ruby	has	drawn	devoted	coders	worldwide.	In	2006,	Ruby	achieved	mass	acceptance.	With	active	user	groups	formed	in	the	world’s	major	cities	and	Ruby-
related	conferences	filled	to	capacity.	Ruby-Talk,	the	primary	mailing	list	for	discussion	of	the	Ruby	language,	climbed	to	an	average	of	200	messages	per	day	in	2006.	It	has	dropped	in	recent	years	as	the	size	of	the	community	pushed	discussion	from	one	central	list	into	many	smaller	groups.	Ruby	is	ranked	among	the	top	10	on	most	of	the	indices
that	measure	the	growth	and	popularity	of	programming	languages	worldwide	(such	as	the	TIOBE	index).	Much	of	the	growth	is	attributed	to	the	popularity	of	software	written	in	Ruby,	particularly	the	Ruby	on	Rails	web	framework.	Ruby	is	also	completely	free.	Not	only	free	of	charge,	but	also	free	to	use,	copy,	modify,	and	distribute.	Seeing
Everything	as	an	Object	Initially,	Matz	looked	at	other	languages	to	find	an	ideal	syntax.	Recalling	his	search,	he	said,	“I	wanted	a	scripting	language	that	was	more	powerful	than	Perl,	and	more	object-oriented	than	Python2.”	In	Ruby,	everything	is	an	object.	Every	bit	of	information	and	code	can	be	given	their	own	properties	and	actions.	Object-
oriented	programming	calls	properties	by	the	name	instance	variables	and	actions	are	known	as	methods.	Ruby’s	pure	object-oriented	approach	is	most	commonly	demonstrated	by	a	bit	of	code	which	applies	an	action	to	a	number.	5.times	{	print	"We	*love*	Ruby	--	it's	outrageous!"	}	In	many	languages,	numbers	and	other	primitive	types	are	not
objects.	Ruby	follows	the	influence	of	the	Smalltalk	language	by	giving	methods	and	instance	variables	to	all	of	its	types.	This	eases	one’s	use	of	Ruby,	since	rules	applying	to	objects	apply	to	all	of	Ruby.	Ruby’s	Flexibility	Ruby	is	seen	as	a	flexible	language,	since	it	allows	its	users	to	freely	alter	its	parts.	Essential	parts	of	Ruby	can	be	removed	or
redefined,	at	will.	Existing	parts	can	be	added	upon.	Ruby	tries	not	to	restrict	the	coder.	For	example,	addition	is	performed	with	the	plus	(+)	operator.	But,	if	you’d	rather	use	the	readable	word	plus,	you	could	add	such	a	method	to	Ruby’s	builtin	Numeric	class.	class	Numeric	def	plus(x)	self.+(x)	end	end	y	=	5.plus	6	#	y	is	now	equal	to	11	Ruby’s
operators	are	syntactic	sugar	for	methods.	You	can	redefine	them	as	well.	Blocks:	a	Truly	Expressive	Feature	Ruby’s	block	are	also	seen	as	a	source	of	great	flexibility.	A	programmer	can	attach	a	closure	to	any	method,	describing	how	that	method	should	act.	The	closure	is	called	a	block	and	has	become	one	of	the	most	popular	features	for
newcomers	to	Ruby	from	other	imperative	languages	like	PHP	or	Visual	Basic.	Blocks	are	inspired	by	functional	languages.	Matz	said,	“in	Ruby	closures,	I	wanted	to	respect	the	Lisp	culture3.”	search_engines	=	%w[Google	Yahoo	MSN].map	do	|engine|	"	."	+	engine.downcase	+	".com"	end	In	the	above	code,	the	block	is	described	inside	the	do	...	end
construct.	The	map	method	applies	the	block	to	the	provided	list	of	words.	Many	other	methods	in	Ruby	leave	a	hole	open	for	a	coder	to	write	their	own	block	to	fill	in	the	details	of	what	that	method	should	do.	Ruby	and	the	Mixin	Unlike	many	object-oriented	languages,	Ruby	features	single	inheritance	only,	on	purpose.	But	Ruby	knows	the	concept	of
modules	(called	Categories	in	Objective-C).	Modules	are	collections	of	methods.	Classes	can	mixin	a	module	and	receive	all	its	methods	for	free.	For	example,	any	class	which	implements	the	each	method	can	mixin	the	Enumerable	module,	which	adds	a	pile	of	methods	that	use	each	for	looping.	class	MyArray	include	Enumerable	end	Generally,
Rubyists	see	this	as	a	much	clearer	way	than	multiple	inheritance,	which	is	complex	and	can	be	too	restrictive.	Ruby’s	Visual	Appearance	While	Ruby	often	uses	very	limited	punctuation	and	usually	prefers	English	keywords,	some	punctuation	is	used	to	decorate	Ruby.	Ruby	needs	no	variable	declarations.	It	uses	simple	naming	conventions	to	denote
the	scope	of	variables.	var	could	be	a	local	variable.	@var	is	an	instance	variable.	$var	is	a	global	variable.	These	sigils	enhance	readability	by	allowing	the	programmer	to	easily	identify	the	roles	of	each	variable.	It	also	becomes	unnecessary	to	use	a	tiresome	self.	prepended	to	every	instance	member.	Beyond	the	Basics	Ruby	has	a	wealth	of	other
features,	among	which	are	the	following:	Ruby	has	exception	handling	features,	like	Java	or	Python,	to	make	it	easy	to	handle	errors.	Ruby	features	a	true	mark-and-sweep	garbage	collector	for	all	Ruby	objects.	No	need	to	maintain	reference	counts	in	extension	libraries.	As	Matz	says,	“This	is	better	for	your	health.”	Writing	C	extensions	in	Ruby	is
easier	than	in	Perl	or	Python,	with	a	very	elegant	API	for	calling	Ruby	from	C.	This	includes	calls	for	embedding	Ruby	in	software,	for	use	as	a	scripting	language.	A	SWIG	interface	is	also	available.	Ruby	can	load	extension	libraries	dynamically	if	an	OS	allows.	Ruby	features	OS	independent	threading.	Thus,	for	all	platforms	on	which	Ruby	runs,	you
also	have	multithreading,	regardless	of	if	the	OS	supports	it	or	not,	even	on	MS-DOS!	Ruby	is	highly	portable:	it	is	developed	mostly	on	GNU/Linux,	but	works	on	many	types	of	UNIX,	macOS,	Windows,	DOS,	BeOS,	OS/2,	etc.	Other	Implementations	of	Ruby	Ruby,	as	a	language,	has	a	few	different	implementations.	This	page	has	been	discussing	the
reference	implementation,	in	the	community	often	referred	to	as	MRI	(“Matz’s	Ruby	Interpreter”)	or	CRuby	(since	it	is	written	in	C),	but	there	are	also	others.	They	are	often	useful	in	certain	situations,	provide	extra	integration	to	other	languages	or	environments,	or	have	special	features	that	MRI	doesn’t.	Here’s	a	list:	JRuby	is	Ruby	atop	the	JVM
(Java	Virtual	Machine),	utilizing	the	JVM’s	optimizing	JIT	compilers,	garbage	collectors,	concurrent	threads,	tool	ecosystem,	and	vast	collection	of	libraries.	Rubinius	is	‘Ruby	written	in	Ruby’.	Built	on	top	of	LLVM,	Rubinius	sports	a	nifty	virtual	machine	that	other	languages	are	being	built	on	top	of,	too.	TruffleRuby	is	a	high	performance	Ruby
implementation	on	top	of	GraalVM.	mruby	is	a	lightweight	implementation	of	the	Ruby	language	that	can	be	linked	and	embedded	within	an	application.	Its	development	is	led	by	Ruby’s	creator	Yukihiro	“Matz”	Matsumoto.	IronRuby	is	an	implementation	“tightly	integrated	with	the	.NET	Framework”.	MagLev	is	“a	fast,	stable,	Ruby	implementation
with	integrated	object	persistence	and	distributed	shared	cache”.	Cardinal	is	a	“Ruby	compiler	for	Parrot	Virtual	Machine”	(Perl	6).	For	a	more	complete	list,	see	Awesome	Rubies.	References	1	Matz,	speaking	on	the	Ruby-Talk	mailing	list,	May	12th,	2000.	2	Matz,	in	An	Interview	with	the	Creator	of	Ruby,	Nov.	29th,	2001.	3	Matz,	in	Blocks	and
Closures	in	Ruby,	December	22nd,	2003.	This	is	a	small	Ruby	tutorial	that	should	take	no	more	than	20	minutes	to	complete.	It	makes	the	assumption	that	you	already	have	Ruby	installed.	(If	you	do	not	have	Ruby	on	your	computer	install	it	before	you	get	started.)	Interactive	Ruby	Ruby	comes	with	a	program	that	will	show	the	results	of	any	Ruby
statements	you	feed	it.	Playing	with	Ruby	code	in	interactive	sessions	like	this	is	a	terrific	way	to	learn	the	language.	Open	up	IRB	(which	stands	for	Interactive	Ruby).	If	you’re	using	macOS	open	up	Terminal	and	type	irb,	then	hit	enter.	If	you’re	using	Linux,	open	up	a	shell	and	type	irb	and	hit	enter.	If	you’re	using	Windows,	open	Interactive	Ruby
from	the	Ruby	section	of	your	Start	Menu.	irb(main):001:0>	Ok,	so	it’s	open.	Now	what?	Type	this:	"Hello	World"	irb(main):001:0>	"Hello	World"	=>	"Hello	World"	Ruby	Obeyed	You!	What	just	happened?	Did	we	just	write	the	world’s	shortest	“Hello	World”	program?	Not	exactly.	The	second	line	is	just	IRB’s	way	of	telling	us	the	result	of	the	last
expression	it	evaluated.	If	we	want	to	print	out	“Hello	World”	we	need	a	bit	more:	irb(main):002:0>	puts	"Hello	World"	Hello	World	=>	nil	puts	is	the	basic	command	to	print	something	out	in	Ruby.	But	then	what’s	the	=>	nil	bit?	That’s	the	result	of	the	expression.	puts	always	returns	nil,	which	is	Ruby’s	absolutely-positively-nothing	value.	Your	Free
Calculator	is	Here	Already,	we	have	enough	to	use	IRB	as	a	basic	calculator:	irb(main):003:0>	3+2	=>	5	Three	plus	two.	Easy	enough.	What	about	three	times	two?	You	could	type	it	in,	it’s	short	enough,	but	you	may	also	be	able	to	go	up	and	change	what	you	just	entered.	Try	hitting	the	up-arrow	on	your	keyboard	and	see	if	it	brings	up	the	line	with
3+2	on	it.	If	it	does,	you	can	use	the	left	arrow	key	to	move	just	after	the	+	sign	and	then	use	backspace	to	change	it	to	a	*	sign.	irb(main):004:0>	3*2	=>	6	Next,	let’s	try	three	squared:	irb(main):005:0>	3**2	=>	9	In	Ruby	**	is	the	way	you	say	“to	the	power	of”.	But	what	if	you	want	to	go	the	other	way	and	find	the	square	root	of	something?
irb(main):006:0>	Math.sqrt(9)	=>	3.0	Ok,	wait,	what	was	that	last	one?	If	you	guessed,	“it	was	figuring	out	the	square	root	of	nine,”	you’re	right.	But	let’s	take	a	closer	look	at	things.	First	of	all,	what’s	Math?	Modules	Group	Code	by	Topic	Math	is	a	built-in	module	for	mathematics.	Modules	serve	two	roles	in	Ruby.	This	shows	one	role:	grouping
similar	methods	together	under	a	familiar	name.	Math	also	contains	methods	like	sin()	and	tan().	Next	is	a	dot.	What	does	the	dot	do?	The	dot	is	how	you	identify	the	receiver	of	a	message.	What’s	the	message?	In	this	case	it’s	sqrt(9),	which	means	call	the	method	sqrt,	shorthand	for	“square	root”	with	the	parameter	of	9.	The	result	of	this	method	call
is	the	value	3.0.	You	might	notice	it’s	not	just	3.	That’s	because	most	of	the	time	the	square	root	of	a	number	won’t	be	an	integer,	so	the	method	always	returns	a	floating-point	number.	What	if	we	want	to	remember	the	result	of	some	of	this	math?	Assign	the	result	to	a	variable.	irb(main):007:0>	a	=	3	**	2	=>	9	irb(main):008:0>	b	=	4	**	2	=>	16
irb(main):009:0>	Math.sqrt(a+b)	=>	5.0	As	great	as	this	is	for	a	calculator,	we’re	getting	away	from	the	traditional	Hello	World	message	that	beginning	tutorials	are	supposed	to	focus	on…	so	let’s	go	back	to	that.	Page	2	What	if	we	want	to	say	“Hello”	a	lot	without	getting	our	fingers	all	tired?	We	need	to	define	a	method!	irb(main):010:0>	def	hi
irb(main):011:1>	puts	"Hello	World!"	irb(main):012:1>	end	=>	:hi	The	code	def	hi	starts	the	definition	of	the	method.	It	tells	Ruby	that	we’re	defining	a	method,	that	its	name	is	hi.	The	next	line	is	the	body	of	the	method,	the	same	line	we	saw	earlier:	puts	"Hello	World".	Finally,	the	last	line	end	tells	Ruby	we’re	done	defining	the	method.	Ruby’s
response	=>	:hi	tells	us	that	it	knows	we’re	done	defining	the	method.	This	response	could	be	=>	nil	for	Ruby	2.0	and	earlier	versions.	But,	it’s	not	important	here,	so	let’s	go	on.	The	Brief,	Repetitive	Lives	of	a	Method	Now	let’s	try	running	that	method	a	few	times:	irb(main):013:0>	hi	Hello	World!	=>	nil	irb(main):014:0>	hi()	Hello	World!	=>	nil
Well,	that	was	easy.	Calling	a	method	in	Ruby	is	as	easy	as	just	mentioning	its	name	to	Ruby.	If	the	method	doesn’t	take	parameters	that’s	all	you	need.	You	can	add	empty	parentheses	if	you’d	like,	but	they’re	not	needed.	What	if	we	want	to	say	hello	to	one	person,	and	not	the	whole	world?	Just	redefine	hi	to	take	a	name	as	a	parameter.
irb(main):015:0>	def	hi(name)	irb(main):016:1>	puts	"Hello	#{name}!"	irb(main):017:1>	end	=>	:hi	irb(main):018:0>	hi("Matz")	Hello	Matz!	=>	nil	So	it	works…	but	let’s	take	a	second	to	see	what’s	going	on	here.	Holding	Spots	in	a	String	What’s	the	#{name}	bit?	That’s	Ruby’s	way	of	inserting	something	into	a	string.	The	bit	between	the	braces	is
turned	into	a	string	(if	it	isn’t	one	already)	and	then	substituted	into	the	outer	string	at	that	point.	You	can	also	use	this	to	make	sure	that	someone’s	name	is	properly	capitalized:	irb(main):019:0>	def	hi(name	=	"World")	irb(main):020:1>	puts	"Hello	#{name.capitalize}!"	irb(main):021:1>	end	=>	:hi	irb(main):022:0>	hi	"chris"	Hello	Chris!	=>	nil
irb(main):023:0>	hi	Hello	World!	=>	nil	A	couple	of	other	tricks	to	spot	here.	One	is	that	we’re	calling	the	method	without	parentheses	again.	If	it’s	obvious	what	you’re	doing,	the	parentheses	are	optional.	The	other	trick	is	the	default	parameter	World.	What	this	is	saying	is	“If	the	name	isn’t	supplied,	use	the	default	name	of	"World"”.	Evolving	Into	a
Greeter	What	if	we	want	a	real	greeter	around,	one	that	remembers	your	name	and	welcomes	you	and	treats	you	always	with	respect.	You	might	want	to	use	an	object	for	that.	Let’s	create	a	“Greeter”	class.	irb(main):024:0>	class	Greeter	irb(main):025:1>	def	initialize(name	=	"World")	irb(main):026:2>	@name	=	name	irb(main):027:2>	end
irb(main):028:1>	def	say_hi	irb(main):029:2>	puts	"Hi	#{@name}!"	irb(main):030:2>	end	irb(main):031:1>	def	say_bye	irb(main):032:2>	puts	"Bye	#{@name},	come	back	soon."	irb(main):033:2>	end	irb(main):034:1>	end	=>	:say_bye	The	new	keyword	here	is	class.	This	defines	a	new	class	called	Greeter	and	a	bunch	of	methods	for	that	class.	Also
notice	@name.	This	is	an	instance	variable,	and	is	available	to	all	the	methods	of	the	class.	As	you	can	see	it’s	used	by	say_hi	and	say_bye.	So	how	do	we	get	this	Greeter	class	set	in	motion?	Create	an	object.	net-imap	gem	に	DoS	の脆弱性が発見されました。この脆弱性は	CVE-2025-43857	として登録されています。net-imap	gem	のアップグレードを推奨します。
もっと読む...	Posted	by	nevans	on	28	Apr	2025	Ruby	3.5.0-preview1	が公開されました。Ruby	3.5では、Unicodeバージョンの15.1.0へのアップデートなど様々な改善が行われています。	もっと読む...	Posted	by	naruse	on	18	Apr	2025	Ruby	3.4.3がリリースされました。	もっと読む...	Posted	by	k0kubun	on	14	Apr	2025	Ruby	3.3.8	がリリースされました。	もっと読む...
Posted	by	nagachika	on	9	Apr	2025	Ruby	is	a	programming	language	from	Japan	which	is	revolutionizing	software	development.	The	beauty	of	Ruby	is	found	in	its	balance	between	simplicity	and	power.	You	can	type	some	Ruby	code	in	the	editor	and	use	these	buttons	to	navigate:	Run	→	Executes	the	code	in	the	editor	Copy	→	Copies	the	example	code
to	the	editor	Next	→	Allows	you	to	go	to	the	next	lesson	Back	→	Allows	you	to	return	to	the	previous	lesson	Click	on	Next	to	start	learning.

