
	

https://rakabof.maxudijuz.com/229310550614347539512188959297956761846170?remixolijogaxekebolurukenimefotabozu=kasagilavusigopobuxeruxuvogupudigonafazinamivanemonaketafumopekirojebeduzewowosixemukajesoxawedenufukivuvopapesagukigukigimepedulugezudekovarabokobufifurijosoxalopugesogunifobofoxelopijudivuwitewinewuwo&utm_term=pdo+connection+example&zasijexonoxafunogefusetumikitarujerokevejozofaramevokak=vezadokezinirenarifukababegogovonobelovetevojatemorajarixavewoganobitaxavinajodupususamenaxarinoveximedezafurexadokirejaxesusiloxibezinenisonikudez

Before	using	database	we	need	to	connect	it	first.	This	process	is	common	in	all	types	of	database	irrespective	of	language	we	use.	We	will	learn	here	the	code	for	connecting	to	MySQL	database	using	PDO	class.	PHP	Data	Object	PDO	installation	or	enable	and	creating	connection	string	to	manage	MySQL	database	It	is	always	a	good	practice	to	keep
the	database	connection	details	at	a	common	place	and	call	it	from	different	pages	where	it	is	required.	This	helps	in	maintaining	the	code	when	the	database	connection	details	changes	or	the	script	is	shifted	to	different	server	with	different	connection	details.	If	we	are	not	using	a	common	file	then	to	change	the	database	details	we	need	not	change
the	connection	string	in	all	the	files.	By	keeping	all	details	at	one	place	if	we	update	the	details	then	all	the	files	will	use	the	same	(updated)	details.	We	can	keep	the	connection	details	in	config.php	file	or	any	other	file	name	you	find	suitable.	All	the	codes	inside	this	file	are	to	be	within	the	PHP	code	block,	so	it	will	not	be	exposed	if	it	is	opened
directly	in	browser.	Let	us	start	with	the	basic	connection	code	in	PDO	for	PHP	&	MySQL	(PHP	MySQL	Connection	code	for	old	system	is	here)	config.php	The	code	below	is	kept	inside	config.php	file	and	can	be	connected	from	any	other	file	in	the	script.	More	on	SQLite	connection	Common	file	config.php	to	keep	all	database	connection	details	and
connected	from	all	script	pages.	Here	the	variables	$host_name	is	the	name	of	the	MySQL	server	host	or	ip	address	('localhost'	or	'127.0.0.1')	To	get	the	database	connection	we	have	to	keep	these	two	lines	inside	any	file	and	start	using	the	database	require	"config.php";	Example	2:	Connecting	to	a	PostgreSQL	Database	Using	PHP	PDO	Connecting
to	a	PostgreSQL	database	with	PDO	is	similar	to	MySQL	but	requires	a	different	DSN.	Heres	an	example:	Example	3:	Setting	Connection	Timeout	in	PDO	Its	possible	to	define	a	connection	timeout	by	setting	the	ATTR_TIMEOUT	attribute:	Example	4:	Using	Persistent	Connections	in	PDO	Persistent	connections	improve	performance	by	reusing	the
same	connection	rather	than	opening	a	new	one	each	time:	Handling	Connection	Errors	Gracefully	Handling	connection	errors	in	a	structured	way	helps	improve	user	experience	and	debugging:	Google	Cloud	&	MySQL	connection	using	PDO	Details	of	MySQL	database	setup	More	on	Managing	MySQL	database	at	Google	cloud	Download	Zip	file	to
test	your	PHP	PDO	script	PDO	References	PDO	Fetch	record	Last	update	on	August	19	2022	21:51:13	(UTC/GMT	+8	hours)	Due	to	its	simplicity	and	ease	of	use,	PHP	is	a	widely-used	open	source	general-purpose	scripting	language.	PHP	is	used	for	creating	interactive	and	dynamic	web	pages	quickly	and	can	access	a	wide	range	of	relational	database
management	systems	such	as	MySQL,	PostgreSQL,	and	SQLite.	Many	of	us	already	access	MySQL	databases	by	using	either	the	MySQL	or	MySQLi	extensions.	As	of	version	5.1	PHP	provides	new	database	connection	abstraction	library,	PHP	Data	Objects	(PDO).	What	is	PDO?	PDO	-	PHP	Data	Object.	A	set	of	PHP	extensions	that	provide	a	core	PDO
class	and	database	specific	drivers.	Provides	a	vendor-neutral	lightweight	data-access	abstraction	layer.	Focus	on	data	access	abstraction	rather	than	database	abstraction.	PDO	requires	the	new	object	oriented	features	in	the	core	of	PHP	5,	therefore	it	will	not	run	with	earlier	versions	of	PHP.	Installing	PDO	PDO	is	dividing	into	two	components:	-
Core	which	provides	the	interface.	-	Drivers	to	access	particular	driver.	Installing	PDO	on	Unix	systems:	--	PDO	(Core)	and	the	PDO_SQLITE	driver	(SQLITE	driver)	is	enabled	by	default	as	of	PHP	5.1.0.	To	access	other	databases	you	must	enable	the	PDO	driver.	--	To	install	PDO	as	a	shared	module	the	php.ini	needs	to	be	updated	so	that	the	PDO
extension	will	be	loaded	automatically	when	PHP	runs.	You	also	need	to	enable	other	database	specific	drivers	and	they	must	be	listed	after	the	pdo.so	line,	as	PDO	must	be	initialized	before	the	database-specific	extensions	can	be	loaded.	If	you	built	PDO	and	the	database-specific	extensions	statically,	you	can	skip	this	step:	extension=pdo.so
Installing	PDO	on	Windows	systems:	--	PDO	and	all	the	major	drivers	ship	with	PHP	as	shared	extensions,	and	simply	need	to	be	activated	by	editing	the	php.ini	file	:	extension=php_pdo.dll.	This	step	is	not	necessary	for	PHP	5.3	and	above,	as	a	DLL	is	no	longer	required	for	PDO.	--	Next,	choose	the	other	database-specific	DLL	files	and	either	use	dl()
to	load	them	at	runtime,	or	enable	them	in	php.ini	below	php_pdo.dll.	To	get	the	effect	of	a	new	configuration	in	php.ini	file	you	will	need	to	restart	PHP.	Predefined	Constants	Supported	Database	PDO	interface	is	available	in	the	following	drivers:	Database	name	Driver	name	Cubrid	PDO_CUBRID	FreeTDS	/	Microsoft	SQL	Server	/	Sybase
PDO_DBLIB	Firebird/Interbase	6	PDO_FIREBIRD	IBM	DB2	PDO_IBM	IBM	Informix	Dynamic	Server	PDO_INFORMIX	MySQL	3.x/4.x/5.x	PDO_MYSQL	Oracle	Call	Interface	PDO_OCI	ODBC	v3	(IBM	DB2,	unixODBC	and	win32	ODBC)	PDO_ODBC	PostgreSQL	PDO_PGSQL	SQLite	3	and	SQLite	2	PDO_SQLITE	Microsoft	SQL	Server	/	SQL	Azure
PDO_SQLSRV	4D	PDO_4D	Sample	database,	table,	table	structure,	table	records	for	various	examples	MySQL:	Database	Name:	hr	Host	Name:	localhost	Database	user:	root	Password:	'	'	Structure	of	the	table:	user_details	Records	of	the	table:	user_details	PostgreSQL:	Date	base	Name:	postgres	Host	Name:	localhost	Database	user:	postgres
Password:	abc123	Structure	of	the	table:	user_details	Records	of	the	table:	user_details	The	PDO	class	The	class	represents	a	connection	between	PHP	and	a	database	server.	Syntax:	PDO	{	__construct	(string	$dsn	[,	string	$username	[,	string	$password	[,	array	$driver_options]]])	bool	beginTransaction	(void)	bool	commit	(void)	mixed	errorCode
(void)	array	errorInfo	(void)	int	exec	(string	$statement)	mixed	getAttribute	(int	$attribute)	static	array	getAvailableDrivers	(void)	bool	inTransaction	(void)	string	lastInsertId	([string	$name	=	NULL])	PDOStatement	prepare	(string	$statement	[,	array	$driver_options	=	array()])	PDOStatement	query	(string	$statement)	string	quote	(
string	$string	[,	int	$parameter_type	=	PDO::PARAM_STR])	bool	rollBack	(void)	bool	setAttribute	(int	$attribute	,	mixed	$value)	}mp($var_name);}	Details	of	the	PDO	class	methods	:	PDO::__construct	Creates	a	PDO	instance	representing	a	connection	to	a	database.	Syntax:	PDO::__construct()	(string	$dsn	[,	string	$username	[,	string	$password	[,
array	$driver_options]]])	Parameters	:	dsn	-	The	Data	Source	Name,	or	DSN,	contains	the	information	required	to	connect	to	the	database.	The	string	contains	the	prefix	name	(e.g.	pgsql	for	PostgreSQL	database),	a	colon,	and	the	server	keyword.	username	-	A	string	that	contains	the	user's	name.	This	parameter	is	optional	for	some	PDO	drivers.
password	-	A	string	that	contains	the	user's	password.	This	parameter	is	optional	for	some	PDO	drivers.	driver_options	-	Optional.	A	key=>value	array	of	driver-specific	connection	options.	Return	Value:	Returns	a	PDO	object	on	success.	If	failure,	returns	a	PDOException	object.	Database	Connections	Connections	are	established	by	creating	instances
of	the	PDO	base	class.	It	doesn't	matter	which	driver	you	want	to	use;	you	always	use	the	PDO	class	name.	The	constructor	accepts	parameters	for	specifying	the	database	source	(known	as	the	DSN)	and	optionally	for	the	username	and	password	(if	any).	MySQL	connection	PostgreSQL	connection	Handling	connection	errors	If	there	are	any
connection	errors,	a	PDOException	object	will	be	thrown.	You	may	catch	the	exception	if	you	want	to	handle	the	error	condition,	or	you	can	leave	it	to	global	exception	handler	which	can	be	set	up	via	set_exception_handler().	MySQL:	Here	the	user	id	is	wrong.	Output:	Error	:	SQLSTATE[28000]	[1045]	Access	denied	for	user	'roott'@'localhost'	(using
password:	NO)	PostgreSQL:	Here	the	database	name	is	wrong.	Output:	Error:	SQLSTATE[08006]	[7]	could	not	connect	to	server:	Connection	refused	(0x0000274D/10061)	Is	the	server	running	on	host	"localhost"	(::1)	and	accepting	TCP/IP	connections	on	port	5432?	FATAL:	password	authentication	failed	for	user	"postgress"	Closing	a	connection
Persistent	connections	Many	web	applications	will	benefit	from	making	persistent	connections	to	database	servers.	Persistent	connections	are	not	closed	at	the	end	of	the	script	but	are	cached	and	re-used	when	another	script	requests	a	connection	using	the	same	credentials.	The	persistent	connection	cache	allows	you	to	avoid	the	overhead	of
establishing	a	new	connection	every	time	a	script	needs	to	talk	to	a	database,	resulting	in	a	faster	web	application.	MySQL:	PostgreSQL:	PDO::beginTransaction	Turns	off	auto-commit	mode	and	begins	a	transaction.	The	transaction	begins	with	PDO::beginTransaction	and	will	end	when	PDO::commit	or	PDO::rollback	is	called.	Syntax:	bool
PDO::beginTransaction	(void)	Return	Value:	Returns	TRUE	on	success	or	FALSE	on	failure.	Example:	The	following	example	a	MySQL	database	called	hr	and	table	called	user_details	have	used.	It	starts	a	transaction	and	then	executes	a	command	to	add	one	row	into	the	table	user_details.	The	command	is	sent	to	the	database	and	the	transaction	is
explicitly	ended	with	PDO::commit.	Output:	PDO::ATTR_AUTOCOMMIT:	PDO::ATTR_ERRMODE:	0	PDO::ATTR_CASE:	0	PDO::ATTR_CLIENT_VERSION:	8.3.6	PDO::ATTR_CONNECTION_STATUS:	Connection	OK;	waiting	to	send.	PDO::ATTR_ORACLE_NULLS:	0	PDO::ATTR_PERSISTENT:	PDO::ATTR_PREFETCH:	PDO::ATTR_SERVER_INFO:	PID:
5940;	Client	Encoding:	UTF8;	Is	Superuser:	on;	Session	Authorization:	postgres;	Date	Style:	ISO,	MDY	PDO::ATTR_SERVER_VERSION:	9.1.3	PDO::ATTR_TIMEOUT:	PDO::getAvailableDrivers	Return	an	array	of	available	PDO	drivers	in	your	PHP	installation.	Syntax:	array	PDO::getAvailableDrivers	();	Return	Value:	An	array	with	the	list	of	PDO
drivers.	Example:	The	following	example	returns	an	array	of	available	PDO	driver	names.	Output:	Array	([0]	=>	mysql	[1]	=>	sqlite)	PDO::inTransaction	Checks	if	a	transaction	is	currently	active	within	the	driver.	This	method	only	works	for	database	drivers	that	support	transactions.	Syntax:	bool	PDO::inTransaction	(void)	Return	Value:	Returns
TRUE	if	a	transaction	is	currently	active,	and	FALSE	if	not.	PDO::lastInsertId	Returns	the	identifier	of	the	last	inserted	row	or	sequence	value	into	a	table	in	the	database.	Syntax:	string	PDO::lastInsertId	([string	$name	=	NULL])	Return	Value:	If	a	sequence	name	was	not	specified	for	the	name	parameter,	PDO::lastInsertId()	returns	a	string
representing	the	row	ID	of	the	last	row	that	was	inserted	into	the	database.	If	a	sequence	name	was	specified	for	the	name	parameter,	PDO::lastInsertId()	returns	a	string	representing	the	last	value	retrieved	from	the	specified	sequence	object.	If	the	PDO	driver	does	not	support	this	capability,	PDO::lastInsertId()	triggers	an	IM001	SQLSTATE.
Example:	The	following	example	(PostgreSQL	database	is	used)	returns	the	ID	of	the	last	inserted	row	or	sequence	value.	Output:	Deleted	4	number	of	rows	PDOStatement::setAttribute	Set	a	statement	attribute.	Currently,	no	generic	attributes	are	set	but	only	driver	specific:	Syntax:	bool	PDOStatement::setAttribute	(int	$attribute	,	mixed	$value)
Return	Value:	Returns	TRUE	on	success	or	FALSE	on	failure.	PDOStatement::setFetchMode	Set	the	default	fetch	mode	for	this	statement.	Syntax:	public	bool	PDOStatement::setFetchMode	(int	$mode)	public	bool	PDOStatement::setFetchMode	(int	$PDO::FETCH_COLUMN	,	int	$colno)	public	bool	PDOStatement::setFetchMode	(int
$PDO::FETCH_CLASS	,	string	$classname	,	array	$ctorargs)	public	bool	PDOStatement::setFetchMode	(int	$PDO::FETCH_INTO	,	object	$object)	Parameters:	Name	Description	Type	mode	The	fetch	mode	must	be	one	of	the	PDO::FETCH_*	constants.	See	the	constants	list.	mixed	colno	Column	number.	int	classname	Class	name.	string	ctorargs
Constructor	arguments.	array	object	Object.	object	Return	Value:	Returns	TRUE	on	success	or	FALSE	on	failure.	Example	-	1:	The	following	example	demonstrates	the	uses	of	PDO::FETCH_ASSOC,	PDO::FETCH_NUM,	PDO::FETCH_BOTH,	PDO::FETCH_LAZY,	PDO::FETCH_OBJ	constants.

