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license,	and	indicate	if	changes	were	made	.	You	may	do	so	in	any	reasonable	manner,	but	not	in	any	way	that	suggests	the	licensor	endorses	you	or	your	use.	ShareAlike	—	If	you	remix,	transform,	or	build	upon	the	material,	you	must	distribute	your	contributions	under	the	same	license	as	the	original.	No	additional	restrictions	—	You	may	not	apply
legal	terms	or	technological	measures	that	legally	restrict	others	from	doing	anything	the	license	permits.	You	do	not	have	to	comply	with	the	license	for	elements	of	the	material	in	the	public	domain	or	where	your	use	is	permitted	by	an	applicable	exception	or	limitation	.	No	warranties	are	given.	The	license	may	not	give	you	all	of	the	permissions
necessary	for	your	intended	use.	For	example,	other	rights	such	as	publicity,	privacy,	or	moral	rights	may	limit	how	you	use	the	material.	Theoretical	physics	is	the	field	that	develops	theories	about	how	nature	operates.	It	is	fundamentally	physics,	in	that	the	ultimate	goal	is	to	describe	reality.	It	is	informed	by	experiment,	and	at	the	same	time	it
extends	the	results	of	experiments,	making	predictions	about	what	has	not	been	physically	tested.	This	is	accomplished	using	the	language	of	mathematics,	and	often	the	demands	of	theoretical	physicists	force	mathematicians	to	extend	this	language	in	new	directions,	but	it	is	not	concerned	with	developing	the	language	of	math.	Theoretical
physicists	are,	among	other	things,	physicists	who	are	very	well-versed	in	math	(which	is	not	to	say	other	physicists	are	not	-	please	don't	hurt	me).	Mathematical	physics,	on	the	other	hand,	is	a	branch	of	mathematics.	It	explores	relations	between	abstract	concepts,	proves	certain	results	contingent	upon	certain	hypotheses,	and	establishes	an
interlinked	set	of	tools	that	can	be	used	to	study	anything	that	happens	to	match	the	relations	and	hypotheses	on	hand.	This	branch	in	particular	is	motivated	by	the	theories	used	in	physics.	It	may	seek	to	prove	certain	truths	that	were	simply	assumed	by	physicists,	or	carefully	delineate	the	conditions	under	which	certain	theories	hold,	or	even
provide	generally	applicable	tools	to	physicists,	who	can	in	turn	apply	them	to	nature.	Mathematical	physicists	are	mathematicians	who	are	intrigued/inspired	by	physics.	One	could	say	that	mathematical	physics	is	concerned	with	the	internal,	logical	consistency	of	physical	theories,	while	theoretical	physics	is	concerned	with	finding	the	right	model
to	describe	the	world	around	us.	Very	roughly,	one	might	diagram	these	things	as	shown	below.	$$	\text{Mathematical	physics}	\Longleftrightarrow	\text{Theoretical	physics}	\Longleftrightarrow	\text{Experimental	physics}	$$	The	mathematical	physics	group	is	concerned	with	problems	in	statistical	mechanics,	atomic	and	molecular	physics,
quantum	field	theory,	and,	in	general,	with	the	mathematical	foundations	of	theoretical	physics.	This	includes	such	subjects	as	quantum	mechanics	(both	nonrelativistic	and	relativistic),	atomic	and	molecular	physics,	disorder	effects	in	condensed	matter,	the	existence	and	properties	of	the	phases	of	model	ferromagnets,	the	stability	of	matter,	the
theory	of	symmetry	and	symmetry	breaking	in	quantum	field	theory	(both	in	general	and	in	concrete	models),	and	mathematical	developments	in	functional	analysis,	algebra	and	modern	probability	theory,	to	which	such	subjects	lead.	In	addition	to	the	physics	faculty,	students	in	mathematical	physics	have	contact	with	the	faculty	of	the	mathematics
department.	No	content	available	to	show.	No	content	available	to	show.	Branch	of	applied	mathematics	Part	of	a	series	onMathematics	History	Index	Areas	Number	theory	Geometry	Algebra	Calculus	and	Analysis	Discrete	mathematics	Logic	Set	theory	Probability	Statistics	and	Decision	theory	Relationship	with	sciences	Physics	Chemistry
Geosciences	Computation	Biology	Linguistics	Economics	Philosophy	Education	Mathematics	Portalvte	Part	of	a	series	onPhysics	Index	Outline	Glossary	History	(timeline)	Branches	Acoustics	Astrophysics	Atomic	physics	Biophysics	Classical	physics	Electromagnetism	Geophysics	Mechanics	Modern	physics	Nuclear	physics	Optics	Thermodynamics
Research	Physicist	(list)	List	of	physics	awards	List	of	journals	List	of	unsolved	problems	Physics	portal		Categoryvte	An	example	of	mathematical	physics:	solutions	of	Schrödinger's	equation	for	quantum	harmonic	oscillators	(left)	with	their	amplitudes	(right).	Mathematical	physics	is	the	development	of	mathematical	methods	for	application	to
problems	in	physics.	The	Journal	of	Mathematical	Physics	defines	the	field	as	"the	application	of	mathematics	to	problems	in	physics	and	the	development	of	mathematical	methods	suitable	for	such	applications	and	for	the	formulation	of	physical	theories".[1]	An	alternative	definition	would	also	include	those	mathematics	that	are	inspired	by	physics,
known	as	physical	mathematics.[2]	There	are	several	distinct	branches	of	mathematical	physics,	and	these	roughly	correspond	to	particular	historical	parts	of	our	world.	Main	articles:	Lagrangian	mechanics	and	Hamiltonian	mechanics	Applying	the	techniques	of	mathematical	physics	to	classical	mechanics	typically	involves	the	rigorous,	abstract,	and
advanced	reformulation	of	Newtonian	mechanics	in	terms	of	Lagrangian	mechanics	and	Hamiltonian	mechanics	(including	both	approaches	in	the	presence	of	constraints).	Both	formulations	are	embodied	in	analytical	mechanics	and	lead	to	an	understanding	of	the	deep	interplay	between	the	notions	of	symmetry	and	conserved	quantities	during	the
dynamical	evolution	of	mechanical	systems,	as	embodied	within	the	most	elementary	formulation	of	Noether's	theorem.	These	approaches	and	ideas	have	been	extended	to	other	areas	of	physics,	such	as	statistical	mechanics,	continuum	mechanics,	classical	field	theory,	and	quantum	field	theory.	Moreover,	they	have	provided	multiple	examples	and
ideas	in	differential	geometry	(e.g.,	several	notions	in	symplectic	geometry	and	vector	bundles).	Main	article:	Partial	differential	equations	Within	mathematics	proper,	the	theory	of	partial	differential	equation,	variational	calculus,	Fourier	analysis,	potential	theory,	and	vector	analysis	are	perhaps	most	closely	associated	with	mathematical	physics.
These	fields	were	developed	intensively	from	the	second	half	of	the	18th	century	(by,	for	example,	D'Alembert,	Euler,	and	Lagrange)	until	the	1930s.	Physical	applications	of	these	developments	include	hydrodynamics,	celestial	mechanics,	continuum	mechanics,	elasticity	theory,	acoustics,	thermodynamics,	electricity,	magnetism,	and	aerodynamics.
Main	article:	Quantum	mechanics	The	theory	of	atomic	spectra	(and,	later,	quantum	mechanics)	developed	almost	concurrently	with	some	parts	of	the	mathematical	fields	of	linear	algebra,	the	spectral	theory	of	operators,	operator	algebras	and,	more	broadly,	functional	analysis.	Nonrelativistic	quantum	mechanics	includes	Schrödinger	operators,	and
it	has	connections	to	atomic	and	molecular	physics.	Quantum	information	theory	is	another	subspecialty.	Main	articles:	Theory	of	relativity	and	Quantum	field	theory	The	special	and	general	theories	of	relativity	require	a	rather	different	type	of	mathematics.	This	was	group	theory,	which	played	an	important	role	in	both	quantum	field	theory	and
differential	geometry.	This	was,	however,	gradually	supplemented	by	topology	and	functional	analysis	in	the	mathematical	description	of	cosmological	as	well	as	quantum	field	theory	phenomena.	In	the	mathematical	description	of	these	physical	areas,	some	concepts	in	homological	algebra	and	category	theory[3]	are	also	important.	Main	article:
Statistical	mechanics	Statistical	mechanics	forms	a	separate	field,	which	includes	the	theory	of	phase	transitions.	It	relies	upon	the	Hamiltonian	mechanics	(or	its	quantum	version)	and	it	is	closely	related	with	the	more	mathematical	ergodic	theory	and	some	parts	of	probability	theory.	There	are	increasing	interactions	between	combinatorics	and
physics,	in	particular	statistical	physics.	Relationship	between	mathematics	and	physics	The	usage	of	the	term	"mathematical	physics"	is	sometimes	idiosyncratic.	Certain	parts	of	mathematics	that	initially	arose	from	the	development	of	physics	are	not,	in	fact,	considered	parts	of	mathematical	physics,	while	other	closely	related	fields	are.	For
example,	ordinary	differential	equations	and	symplectic	geometry	are	generally	viewed	as	purely	mathematical	disciplines,	whereas	dynamical	systems	and	Hamiltonian	mechanics	belong	to	mathematical	physics.	John	Herapath	used	the	term	for	the	title	of	his	1847	text	on	"mathematical	principles	of	natural	philosophy",	the	scope	at	that	time	being
"the	causes	of	heat,	gaseous	elasticity,	gravitation,	and	other	great	phenomena	of	nature".[4]	The	term	"mathematical	physics"	is	sometimes	used	to	denote	research	aimed	at	studying	and	solving	problems	in	physics	or	thought	experiments	within	a	mathematically	rigorous	framework.	In	this	sense,	mathematical	physics	covers	a	very	broad	academic
realm	distinguished	only	by	the	blending	of	some	mathematical	aspect	and	theoretical	physics	aspect.	Although	related	to	theoretical	physics,[5]	mathematical	physics	in	this	sense	emphasizes	the	mathematical	rigour	of	the	similar	type	as	found	in	mathematics.	On	the	other	hand,	theoretical	physics	emphasizes	the	links	to	observations	and
experimental	physics,	which	often	requires	theoretical	physicists	(and	mathematical	physicists	in	the	more	general	sense)	to	use	heuristic,	intuitive,	or	approximate	arguments.[6]	Such	arguments	are	not	considered	rigorous	by	mathematicians.	Such	mathematical	physicists	primarily	expand	and	elucidate	physical	theories.	Because	of	the	required
level	of	mathematical	rigour,	these	researchers	often	deal	with	questions	that	theoretical	physicists	have	considered	to	be	already	solved.	However,	they	can	sometimes	show	that	the	previous	solution	was	incomplete,	incorrect,	or	simply	too	naïve.	Issues	about	attempts	to	infer	the	second	law	of	thermodynamics	from	statistical	mechanics	are
examples.[citation	needed]	Other	examples	concern	the	subtleties	involved	with	synchronisation	procedures	in	special	and	general	relativity	(Sagnac	effect	and	Einstein	synchronisation).	The	effort	to	put	physical	theories	on	a	mathematically	rigorous	footing	not	only	developed	physics	but	also	has	influenced	developments	of	some	mathematical
areas.	For	example,	the	development	of	quantum	mechanics	and	some	aspects	of	functional	analysis	parallel	each	other	in	many	ways.	The	mathematical	study	of	quantum	mechanics,	quantum	field	theory,	and	quantum	statistical	mechanics	has	motivated	results	in	operator	algebras.	The	attempt	to	construct	a	rigorous	mathematical	formulation	of
quantum	field	theory	has	also	brought	about	some	progress	in	fields	such	as	representation	theory.	There	is	a	tradition	of	mathematical	analysis	of	nature	that	goes	back	to	the	ancient	Greeks;	examples	include	Euclid	(Optics),	Archimedes	(On	the	Equilibrium	of	Planes,	On	Floating	Bodies),	and	Ptolemy	(Optics,	Harmonics).[7][8]	Later,	Islamic	and
Byzantine	scholars	built	on	these	works,	and	these	ultimately	were	reintroduced	or	became	available	to	the	West	in	the	12th	century	and	during	the	Renaissance.	In	the	first	decade	of	the	16th	century,	amateur	astronomer	Nicolaus	Copernicus	proposed	heliocentrism,	and	published	a	treatise	on	it	in	1543.	He	retained	the	Ptolemaic	idea	of	epicycles,
and	merely	sought	to	simplify	astronomy	by	constructing	simpler	sets	of	epicyclic	orbits.	Epicycles	consist	of	circles	upon	circles.	According	to	Aristotelian	physics,	the	circle	was	the	perfect	form	of	motion,	and	was	the	intrinsic	motion	of	Aristotle's	fifth	element—the	quintessence	or	universal	essence	known	in	Greek	as	aether	for	the	English	pure	air
—that	was	the	pure	substance	beyond	the	sublunary	sphere,	and	thus	was	celestial	entities'	pure	composition.	The	German	Johannes	Kepler	[1571–1630],	Tycho	Brahe's	assistant,	modified	Copernican	orbits	to	ellipses,	formalized	in	the	equations	of	Kepler's	laws	of	planetary	motion.	An	enthusiastic	atomist,	Galileo	Galilei	in	his	1623	book	The	Assayer
asserted	that	the	"book	of	nature	is	written	in	mathematics".[9]	His	1632	book,	about	his	telescopic	observations,	supported	heliocentrism.[10]	Having	made	use	of	experimentation,	Galileo	then	refuted	geocentric	cosmology	by	refuting	Aristotelian	physics	itself.	Galileo's	1638	book	Discourse	on	Two	New	Sciences	established	the	law	of	equal	free	fall
as	well	as	the	principles	of	inertial	motion,	two	central	concepts	of	what	today	is	known	as	classical	mechanics.[10]	By	the	Galilean	law	of	inertia	as	well	as	the	principle	of	Galilean	invariance,	also	called	Galilean	relativity,	for	any	object	experiencing	inertia,	there	is	empirical	justification	for	knowing	only	that	it	is	at	relative	rest	or	relative	motion—
rest	or	motion	with	respect	to	another	object.	René	Descartes	developed	a	complete	system	of	heliocentric	cosmology	anchored	on	the	principle	of	vortex	motion,	Cartesian	physics,	whose	widespread	acceptance	helped	bring	the	demise	of	Aristotelian	physics.	Descartes	used	mathematical	reasoning	as	a	model	for	science,	and	developed	analytic
geometry,	which	in	time	allowed	the	plotting	of	locations	in	3D	space	(Cartesian	coordinates)	and	marking	their	progressions	along	the	flow	of	time.[11]	Christiaan	Huygens,	a	talented	mathematician	and	physicist	and	older	contemporary	of	Newton,	was	the	first	to	successfully	idealize	a	physical	problem	by	a	set	of	mathematical	parameters	in
Horologium	Oscillatorum	(1673),	and	the	first	to	fully	mathematize	a	mechanistic	explanation	of	an	unobservable	physical	phenomenon	in	Traité	de	la	Lumière	(1690).	He	is	thus	considered	a	forerunner	of	theoretical	physics	and	one	of	the	founders	of	modern	mathematical	physics.[12][13]	The	prevailing	framework	for	science	in	the	16th	and	early
17th	centuries	was	one	borrowed	from	Ancient	Greek	mathematics,	where	geometrical	shapes	formed	the	building	blocks	to	describe	and	think	about	space,	and	time	was	often	thought	as	a	separate	entity.	With	the	introduction	of	algebra	into	geometry,	and	with	it	the	idea	of	a	coordinate	system,	time	and	space	could	now	be	thought	as	axes
belonging	to	the	same	plane.	This	essential	mathematical	framework	is	at	the	base	of	all	modern	physics	and	used	in	all	further	mathematical	frameworks	developed	in	next	centuries.	By	the	middle	of	the	17th	century,	important	concepts	such	as	the	fundamental	theorem	of	calculus	(proved	in	1668	by	Scottish	mathematician	James	Gregory)	and
finding	extrema	and	minima	of	functions	via	differentiation	using	Fermat's	theorem	(by	French	mathematician	Pierre	de	Fermat)	were	already	known	before	Leibniz	and	Newton.[14]	Isaac	Newton	(1642–1727)	developed	calculus	(although	Gottfried	Wilhelm	Leibniz	developed	similar	concepts	outside	the	context	of	physics)	and	Newton's	method	to
solve	problems	in	mathematics	and	physics.	He	was	extremely	successful	in	his	application	of	calculus	and	other	methods	to	the	study	of	motion.	Newton's	theory	of	motion,	culminating	in	his	Philosophiæ	Naturalis	Principia	Mathematica	(Mathematical	Principles	of	Natural	Philosophy)	in	1687,	modeled	three	Galilean	laws	of	motion	along	with
Newton's	law	of	universal	gravitation	on	a	framework	of	absolute	space—hypothesized	by	Newton	as	a	physically	real	entity	of	Euclidean	geometric	structure	extending	infinitely	in	all	directions—while	presuming	absolute	time,	supposedly	justifying	knowledge	of	absolute	motion,	the	object's	motion	with	respect	to	absolute	space.[15]	The	principle	of
Galilean	invariance/relativity	was	merely	implicit	in	Newton's	theory	of	motion.	Having	ostensibly	reduced	the	Keplerian	celestial	laws	of	motion	as	well	as	Galilean	terrestrial	laws	of	motion	to	a	unifying	force,	Newton	achieved	great	mathematical	rigor,	but	with	theoretical	laxity.[16]	In	the	18th	century,	the	Swiss	Daniel	Bernoulli	(1700–1782)	made
contributions	to	fluid	dynamics,	and	vibrating	strings.	The	Swiss	Leonhard	Euler	(1707–1783)	did	special	work	in	variational	calculus,	dynamics,	fluid	dynamics,	and	other	areas.	Also	notable	was	the	Italian-born	Frenchman,	Joseph-Louis	Lagrange	(1736–1813)	for	work	in	analytical	mechanics:	he	formulated	Lagrangian	mechanics)	and	variational
methods.	A	major	contribution	to	the	formulation	of	Analytical	Dynamics	called	Hamiltonian	dynamics	was	also	made	by	the	Irish	physicist,	astronomer	and	mathematician,	William	Rowan	Hamilton	(1805–1865).	Hamiltonian	dynamics	had	played	an	important	role	in	the	formulation	of	modern	theories	in	physics,	including	field	theory	and	quantum
mechanics.	The	French	mathematical	physicist	Joseph	Fourier	(1768	–	1830)	introduced	the	notion	of	Fourier	series	to	solve	the	heat	equation,	giving	rise	to	a	new	approach	to	solving	partial	differential	equations	by	means	of	integral	transforms.	Into	the	early	19th	century,	following	mathematicians	in	France,	Germany	and	England	had	contributed
to	mathematical	physics.	The	French	Pierre-Simon	Laplace	(1749–1827)	made	paramount	contributions	to	mathematical	astronomy,	potential	theory.	Siméon	Denis	Poisson	(1781–1840)	worked	in	analytical	mechanics	and	potential	theory.	In	Germany,	Carl	Friedrich	Gauss	(1777–1855)	made	key	contributions	to	the	theoretical	foundations	of
electricity,	magnetism,	mechanics,	and	fluid	dynamics.	In	England,	George	Green	(1793–1841)	published	An	Essay	on	the	Application	of	Mathematical	Analysis	to	the	Theories	of	Electricity	and	Magnetism	in	1828,	which	in	addition	to	its	significant	contributions	to	mathematics	made	early	progress	towards	laying	down	the	mathematical	foundations
of	electricity	and	magnetism.	A	couple	of	decades	ahead	of	Newton's	publication	of	a	particle	theory	of	light,	the	Dutch	Christiaan	Huygens	(1629–1695)	developed	the	wave	theory	of	light,	published	in	1690.	By	1804,	Thomas	Young's	double-slit	experiment	revealed	an	interference	pattern,	as	though	light	were	a	wave,	and	thus	Huygens's	wave
theory	of	light,	as	well	as	Huygens's	inference	that	light	waves	were	vibrations	of	the	luminiferous	aether,	was	accepted.	Jean-Augustin	Fresnel	modeled	hypothetical	behavior	of	the	aether.	The	English	physicist	Michael	Faraday	introduced	the	theoretical	concept	of	a	field—not	action	at	a	distance.	Mid-19th	century,	the	Scottish	James	Clerk	Maxwell
(1831–1879)	reduced	electricity	and	magnetism	to	Maxwell's	electromagnetic	field	theory,	whittled	down	by	others	to	the	four	Maxwell's	equations.	Initially,	optics	was	found	consequent	of[clarification	needed]	Maxwell's	field.	Later,	radiation	and	then	today's	known	electromagnetic	spectrum	were	found	also	consequent	of[clarification	needed]	this
electromagnetic	field.	The	English	physicist	Lord	Rayleigh	[1842–1919]	worked	on	sound.	The	Irishmen	William	Rowan	Hamilton	(1805–1865),	George	Gabriel	Stokes	(1819–1903)	and	Lord	Kelvin	(1824–1907)	produced	several	major	works:	Stokes	was	a	leader	in	optics	and	fluid	dynamics;	Kelvin	made	substantial	discoveries	in	thermodynamics;
Hamilton	did	notable	work	on	analytical	mechanics,	discovering	a	new	and	powerful	approach	nowadays	known	as	Hamiltonian	mechanics.	Very	relevant	contributions	to	this	approach	are	due	to	his	German	colleague	mathematician	Carl	Gustav	Jacobi	(1804–1851)	in	particular	referring	to	canonical	transformations.	The	German	Hermann	von
Helmholtz	(1821–1894)	made	substantial	contributions	in	the	fields	of	electromagnetism,	waves,	fluids,	and	sound.	In	the	United	States,	the	pioneering	work	of	Josiah	Willard	Gibbs	(1839–1903)	became	the	basis	for	statistical	mechanics.	Fundamental	theoretical	results	in	this	area	were	achieved	by	the	German	Ludwig	Boltzmann	(1844–1906).
Together,	these	individuals	laid	the	foundations	of	electromagnetic	theory,	fluid	dynamics,	and	statistical	mechanics.	By	the	1880s,	there	was	a	prominent	paradox	that	an	observer	within	Maxwell's	electromagnetic	field	measured	it	at	approximately	constant	speed,	regardless	of	the	observer's	speed	relative	to	other	objects	within	the	electromagnetic
field.	Thus,	although	the	observer's	speed	was	continually	lost[clarification	needed]	relative	to	the	electromagnetic	field,	it	was	preserved	relative	to	other	objects	in	the	electromagnetic	field.	And	yet	no	violation	of	Galilean	invariance	within	physical	interactions	among	objects	was	detected.	As	Maxwell's	electromagnetic	field	was	modeled	as
oscillations	of	the	aether,	physicists	inferred	that	motion	within	the	aether	resulted	in	aether	drift,	shifting	the	electromagnetic	field,	explaining	the	observer's	missing	speed	relative	to	it.	The	Galilean	transformation	had	been	the	mathematical	process	used	to	translate	the	positions	in	one	reference	frame	to	predictions	of	positions	in	another
reference	frame,	all	plotted	on	Cartesian	coordinates,	but	this	process	was	replaced	by	Lorentz	transformation,	modeled	by	the	Dutch	Hendrik	Lorentz	[1853–1928].	In	1887,	experimentalists	Michelson	and	Morley	failed	to	detect	aether	drift,	however.	It	was	hypothesized	that	motion	into	the	aether	prompted	aether's	shortening,	too,	as	modeled	in
the	Lorentz	contraction.	It	was	hypothesized	that	the	aether	thus	kept	Maxwell's	electromagnetic	field	aligned	with	the	principle	of	Galilean	invariance	across	all	inertial	frames	of	reference,	while	Newton's	theory	of	motion	was	spared.	Austrian	theoretical	physicist	and	philosopher	Ernst	Mach	criticized	Newton's	postulated	absolute	space.
Mathematician	Jules-Henri	Poincaré	(1854–1912)	questioned	even	absolute	time.	In	1905,	Pierre	Duhem	published	a	devastating	criticism	of	the	foundation	of	Newton's	theory	of	motion.[16]	Also	in	1905,	Albert	Einstein	(1879–1955)	published	his	special	theory	of	relativity,	newly	explaining	both	the	electromagnetic	field's	invariance	and	Galilean
invariance	by	discarding	all	hypotheses	concerning	aether,	including	the	existence	of	aether	itself.	Refuting	the	framework	of	Newton's	theory—absolute	space	and	absolute	time—special	relativity	refers	to	relative	space	and	relative	time,	whereby	length	contracts	and	time	dilates	along	the	travel	pathway	of	an	object.	Cartesian	coordinates
arbitrarily	used	rectilinear	coordinates.	Gauss,	inspired	by	Descartes'	work,	introduced	the	curved	geometry,	replacing	rectilinear	axis	by	curved	ones.	Gauss	also	introduced	another	key	tool	of	modern	physics,	the	curvature.	Gauss's	work	was	limited	to	two	dimensions.	Extending	it	to	three	or	more	dimensions	introduced	a	lot	of	complexity,	with	the
need	of	the	(not	yet	invented)	tensors.	It	was	Riemman	the	one	in	charge	to	extend	curved	geometry	to	N	dimensions.	In	1908,	Einstein's	former	mathematics	professor	Hermann	Minkowski,	applied	the	curved	geometry	construction	to	model	3D	space	together	with	the	1D	axis	of	time	by	treating	the	temporal	axis	like	a	fourth	spatial	dimension—
altogether	4D	spacetime—and	declared	the	imminent	demise	of	the	separation	of	space	and	time.	[17]	Einstein	initially	called	this	"superfluous	learnedness",	but	later	used	Minkowski	spacetime	with	great	elegance	in	his	general	theory	of	relativity,[18]	extending	invariance	to	all	reference	frames—whether	perceived	as	inertial	or	as	accelerated—and
credited	this	to	Minkowski,	by	then	deceased.	General	relativity	replaces	Cartesian	coordinates	with	Gaussian	coordinates,	and	replaces	Newton's	claimed	empty	yet	Euclidean	space	traversed	instantly	by	Newton's	vector	of	hypothetical	gravitational	force—an	instant	action	at	a	distance—with	a	gravitational	field.	The	gravitational	field	is	Minkowski
spacetime	itself,	the	4D	topology	of	Einstein	aether	modeled	on	a	Lorentzian	manifold	that	"curves"	geometrically,	according	to	the	Riemann	curvature	tensor.	The	concept	of	Newton's	gravity:	"two	masses	attract	each	other"	replaced	by	the	geometrical	argument:	"mass	transform	curvatures	of	spacetime	and	free	falling	particles	with	mass	move
along	a	geodesic	curve	in	the	spacetime"	(Riemannian	geometry	already	existed	before	the	1850s,	by	mathematicians	Carl	Friedrich	Gauss	and	Bernhard	Riemann	in	search	for	intrinsic	geometry	and	non-Euclidean	geometry.),	in	the	vicinity	of	either	mass	or	energy.	(Under	special	relativity—a	special	case	of	general	relativity—even	massless	energy
exerts	gravitational	effect	by	its	mass	equivalence	locally	"curving"	the	geometry	of	the	four,	unified	dimensions	of	space	and	time.)	Another	revolutionary	development	of	the	20th	century	was	quantum	theory,	which	emerged	from	the	seminal	contributions	of	Max	Planck	(1856–1947)	(on	black-body	radiation)	and	Einstein's	work	on	the	photoelectric
effect.	In	1912,	a	mathematician	Henri	Poincare	published	Sur	la	théorie	des	quanta.[19][20]	He	introduced	the	first	non-naïve	definition	of	quantization	in	this	paper.	The	development	of	early	quantum	physics	followed	by	a	heuristic	framework	devised	by	Arnold	Sommerfeld	(1868–1951)	and	Niels	Bohr	(1885–1962),	but	this	was	soon	replaced	by	the
quantum	mechanics	developed	by	Max	Born	(1882–1970),	Louis	de	Broglie	(1892–1987),	Werner	Heisenberg	(1901–1976),	Paul	Dirac	(1902–1984),	Erwin	Schrödinger	(1887–1961),	Satyendra	Nath	Bose	(1894–1974),	and	Wolfgang	Pauli	(1900–1958).	This	revolutionary	theoretical	framework	is	based	on	a	probabilistic	interpretation	of	states,	and
evolution	and	measurements	in	terms	of	self-adjoint	operators	on	an	infinite-dimensional	vector	space.	That	is	called	Hilbert	space	(introduced	by	mathematicians	David	Hilbert	(1862–1943),	Erhard	Schmidt	(1876–1959)	and	Frigyes	Riesz	(1880–1956)	in	search	of	generalization	of	Euclidean	space	and	study	of	integral	equations),	and	rigorously
defined	within	the	axiomatic	modern	version	by	John	von	Neumann	in	his	celebrated	book	Mathematical	Foundations	of	Quantum	Mechanics,	where	he	built	up	a	relevant	part	of	modern	functional	analysis	on	Hilbert	spaces,	the	spectral	theory	(introduced	by	David	Hilbert	who	investigated	quadratic	forms	with	infinitely	many	variables.	Many	years
later,	it	had	been	revealed	that	his	spectral	theory	is	associated	with	the	spectrum	of	the	hydrogen	atom.	He	was	surprised	by	this	application.)	in	particular.	Paul	Dirac	used	algebraic	constructions	to	produce	a	relativistic	model	for	the	electron,	predicting	its	magnetic	moment	and	the	existence	of	its	antiparticle,	the	positron.	Prominent	contributors
to	the	20th	century's	mathematical	physics	include	(ordered	by	birth	date):	William	Thomson	(Lord	Kelvin)	(1824–1907)	Oliver	Heaviside	(1850–1925)	Jules	Henri	Poincaré	(1854–1912)	David	Hilbert	(1862–1943)	Arnold	Sommerfeld	(1868–1951)	Constantin	Carathéodory	(1873–1950)	Albert	Einstein	(1879–1955)	Emmy	Noether	(1882–1935)	Max	Born
(1882–1970)	George	David	Birkhoff	(1884–1944)	Hermann	Weyl	(1885–1955)	Satyendra	Nath	Bose	(1894–1974)	Louis	de	Broglie	(1892–1987)	Norbert	Wiener	(1894–1964)	John	Lighton	Synge	(1897–1995)	Mário	Schenberg	(1914–1990)	Wolfgang	Pauli	(1900–1958)	Paul	Dirac	(1902–1984)	Eugene	Wigner	(1902–1995)	Andrey	Kolmogorov	(1903–1987)
Lars	Onsager	(1903–1976)	John	von	Neumann	(1903–1957)	Sin-Itiro	Tomonaga	(1906–1979)	Hideki	Yukawa	(1907–1981)	Nikolay	Nikolayevich	Bogolyubov	(1909–1992)	Subrahmanyan	Chandrasekhar	(1910–1995)	Mark	Kac	(1914–1984)	Julian	Schwinger	(1918–1994)	Richard	Phillips	Feynman	(1918–1988)	Irving	Ezra	Segal	(1918–1998)	Ryogo	Kubo
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