
	

Continue

https://feedproxy.google.com/~r/Gsjc/~3/cmwvf4RlXg4/uplcv?utm_term=bash+if+one+line+example

Bash	if	one	line	example

Bash	if	statement	examples	one	line.

Bash	is	a	flexible	programming	language	that	allows	you	to	write	programs	just	as	you	like.	Before	entering	the	article,	we	would	like	to	share	with	you	a	good	programming	practice.	Whenever	you	write	a	program	in	any	programming	language,	code	readability	should	always	be	your	priority.	This	is	because	your	code	is	not	only	used	by	yourself,	but
there	will	be	many	other	programmers	who	will	use	and	read	your	code.	Therefore,	your	code	should	be	read	enough	to	be	understood	by	all.	Today’s	article	introduces	you	to	the	concept	of	programming	to	a	line.	Bash	allows	you	to	write	components,	such	as	loops	or	conditional	statements,	in	a	row.	You	might	wonder	why	we	should	consider
writing	these	components	in	a	row	when	we	just	explained	to	you	the	concept	of	legibility.	To	understand	this,	consider	the	following	scenario:	you	have	a	program	that	spans	on	a	thousand	lines.	Such	a	long	code	would	be	difficult	to	display,	as	well	as	debug.	In	this	situation,	if	your	code	contains	many	different	loops	and	conditional	statements,	then
it	would	improve	code	readability	to	write	different	statements	in	a	row	to	make	your	code	more	compact.	The	following	tutorial	shows	how	to	write	the	Bash	if/heelse	statements	in	a	line	in	Linux	Mint	20	providing	different	examples	of	these	statements.	Methods	for	writing	Bash	Se/Else	declarations	in	one	line	To	learn	more	about	writing	Bash
if/hese	statements	in	a	line	in	Linux	Mint	20,	examine	the	following	example	Bash	script:	Example	1:	Compare	two	strings	in	one	line	In	the	first	example,	we	will	write	a	Bash	script	that	will	compare	two	strings	in	one	line.	To	get	this	feature,	write	the	Bash	script	shown	in	the	image	below	in	a	Bash	file:	We	will	compare	two	default	strings	in	the	“if”
part	of	the	statement	and	a	message	will	be	displayed	if	this	part	is	executed.	Then,	the	“heelse”	part	of	the	statement	will	also	show	a	message	if	it	is	executed.	To	run	this	Bash	script,	we	will	use	the	following	command:	Since	both	strings	were	equal,	the	statement	“if”	will	be	executed.	We	will	get	the	message	shown	below	after	running	this	script:
Now,	we	will	change	our	Bash	script	a	bit	by	changing	one	of	the	strings,	as	shown	in	the	following	image:	After	doing	this	change,	when	we	re-run	our	Bash	script,	the	"else"	statement	will	be	executed,	and	we	will	get	the	message	shown	in	the	image	below:	Example	2:	Comparing	a	Variable	with	an	Integer	in	One	Line	Now,	we	will	write	a	Bash
script	that	will	compare	a	variable	with	a	whole	in	a	row.	To	get	this	feature,	write	the	Bash	script	shown	in	the	image	below	in	a	Bash	file:	We	will	create	a	variable	called	“var”	and	will	award	the“20.”	So,	we’ll	compare	the	value	of	this	variable	with	an	integer	â​​25â​​	for	equality	in	the	â​​seâ​​	portion	of	the	statement.	A	message	will	be	displayed	if	this
part	is	executed.	So,	so,	of	instruction	will	also	display	a	message	if	it	is	executed.	Since	the	value	of	the	variable	âvarâ	was	not	equal	to	â25,â	the	instruction	âelseâ	will	be	executed.	We	will	get	the	message	shown	below	to	run	this	script:	Now,	we	will	change	our	Bash	script	a	bit	by	changing	the	value	of	our	âvar	variable	and	setting	it	to	â25,â	as
shown	in	the	following	image:	After	doing	this	change,	when	we	run	our	Bash	script	again,	the	âifâ	instruction	will	be	executed.	We	will	get	the	following	message	to	run	this	script:	Example	3:	Comparison	of	two	variables	in	one	line	Finally,	we	will	write	a	Bash	script	that	will	compare	two	whole	variables	in	one	line.	To	get	this	feature,	write	the
Bash	script	shown	in	the	image	below	in	a	Bash	file:	We	have	created	the	two	variables	'¡var1'	and	'var2'	and	assigned	the	values	'¡25'	and	'20'	respectively.	Thus,	the	values	of	these	variables	will	be	compared	for	equality	in	the	‘if’	part	of	education,	and	if	this	part	is	performed,	a	message	will	be	displayed.	Then,	the	‘heelse’	part	of	the	instruction	will
also	show	a	message	if	it	is	performed.	Since	the	value	of	‘var1’	was	not	equal	to	the	value	of	‘var2,’	the	‘heel’	instruction	will	be	performed.	We	will	get	the	following	message	when	running	this	script:	Now,	we	will	change	our	Bash	script	a	bit	by	changing	the	value	of	our	“var2”	in	“25”	so	that	the	values	of	both	variables	are	the	same,	as	shown	in
the	following	image:	After	doing	this	change,	when	we	do	our	Bash	script	again,	the	“if”	instruction	will	be	executed.	We	will	get	the	following	message	after	running	this	script:	Conclusion	This	article	provides	three	different	examples	and	their	slight	variations	for	writing	if/else	in	Bash	in	Linux.	This	tutorial	showed	you	how	to	use	the	Bash
conditional	instructions	all	contained	in	a	single	line,	making	your	code	more	compact	and	readable.	NEWBEDEVPythonJavascriptLinuxCheat	sheet©	2021	newbedevPrivacy	Policy	Bash	if	instructions	are	very	useful.	In	this	section	of	our	Tutorial	Bash	Scripting	you	will	learn	how	to	use	the	instructions	contained	in	your	Bash	scripts	to	automate	your
tasks.	If	the	instructions	(and,	strictly	related,	case	instructions)	allow	us	to	make	decisions	in	our	Bash	scripts.	They	allow	us	to	decide	whether	or	not	to	run	a	piece	of	code	according	to	the	conditions	we	can	set.	If	the	instructions,	combined	with	the	cycles	(which	we	will	see	in	the	next	section)	allow	us	to	create	much	more	complex	scripts	that	can
solve	larger	tasks.	Like	what	we	saw	in	the	previous	sections,	their	syntax	is	very	specific	so	stay	above	all	the	small	details.	Basic	executions	If	A	basic	instruction	if	actually	says,	if	a	particular	test	is	true,	then	run	aset	of	actions.	If	not,	then	do	not	perform	those	actions.	If	follows	the	following	format:	if	[]thenfi	Anything	between	then	then	fi	(if
backwards)	will	only	be	executed	if	the	test	(between	square	brackets)	is	true.	Let’s	look	at	a	simple	example:	if_example.sh	#!/bin/bash	if	[$1	-gt	100]	then	echo	Hey,	that’s	a	big	number.	Release	date	Let’s	break	it	down:	Line	4	–	Let’s	see	if	the	first	command	line	argument	is	greater	than	100	Line	6	and	7	–	will	only	run	if	the	test	on	line	4	returns
true.	You	can	have	all	the	controls	you	want	here.	Line	6	–	The	backslash	(\)	in	front	of	the	single	quote	(')	is	necessary	because	the	single	quote	has	a	special	meaning	for	bash	and	we	don’t	want	that	special	meaning.	The	backslash	escapes	the	special	meaning	to	make	it	a	normal	single	quote.	Line	8	–	fi	indicates	the	end	of	the	declaration.	All
commands	after	this	will	be	executed	as	normal.	Line	10	–	Because	this	command	is	out	of	the	declaration	if	it	will	be	executed	regardless	of	the	result	of	the	declaration.	./if_example.sh	15	Sun	31	Oct	23:29:47	2021	./if_example.sh	150	Hey,	that’s	a	big	number.	/home/ryan/bin	Sun	31	Oct	23:29:47	2021	It	is	always	good	practice	to	test	your	scripts
with	input	covering	the	different	scenarios	that	are	possible.	The	square	brackets	([])	in	the	above	statement	are	actually	a	reference	to	the	command	test.	This	means	that	all	operators	that	the	test	allows	can	also	be	used	here.	See	the	man	page	for	the	test	to	see	all	possible	operators	(there	are	quite	a	few)	but	some	of	the	most	common	are	listed
below.	Description	of	the	operator!	EXPRESSION	EXPRESSION	is	false.	-N	STRUCTURE	The	length	of	STRING	is	greater	than	zero.	-	Yeah.	STRUCTURE	STRING’s	lengh	is	zero	(i.e.	it	is	empty).	STRING1	=	STRING2	STRING1	is	equal	to	STRING2	STRING1!=	STRING2	STRING1	is	not	equal	to	STRING2	INTEGER1	-eq	INTEGER2	INTEGER1	is
numerically	equal	to	INTEGER2	INTEGER1	-gt	INTEGER2	INTEGER1	is	numerically	greater	than	INTEGER1	2	INTEGER1	-lt	INTEGER2	INTEGER1	is	numerically	smaller	than	INTEGER2	-d	FILE	FILE	exists	and	is	a	directory.	-and	FILE	FILE	exists.	-r	FILE	FILE	exists	and	read	permission	is	granted.	-s	FILE	FILE	exists	and	its	size	is	greater	than
zero	(i.e.	it	is	not	empty).	-w	FILE	FILE	exists	and	write	permission	is	granted.	-x	FILE	FILE	exists	and	permission	to	execute	is	granted.	Some	points	to	note:	=	is	slightly	different	from	-eq.	[001	=	1]	will	return	false	as	=	does	a	string	comparison	(i.e.	character	by	character	the	same)	while	-eq	does	a	numerical	comparison	meaning	[001	-eq	1]	will
return	true.	When	we	refer	to	FILE	above	we	are	actually	meaning	a	path.	Remember	that	a	path	can	be	absolute	or	relative	and	can	refer	to	a	file	or	directory.	Because	[]	is	just	a	reference	to	the	command	test	that	we	can	experiment	with	and	shoot	with	the	test	on	the	command	line	to	make	sure	that	our	understanding	of	its	behavior	is	correct.
test	001	=	1	echo	$?	1	test	001	-eq	1	echo	$?	0	touch	myfile	-s	myfile	echo	$?	1	ls	/etc	>	myfile	test	-s	myfile	echo	$?	0	Depth:	Line	1	-	Comparison	based	on	strings.	Test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test
test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test
test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test
test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	test	testprints	the	result	so	instead	we	check	the	output	status	which	is	what	we	will	do	on	the	next	line.	Line	2	-	The	$?	variable	holds	the	output	state	of
the	previously	executed	command	(in	this	case	test).	0	means	TRUE	(or	success).	1	=	FALSE	(or	fault).	Line	4	–	This	time	we	are	running	a	numerical	comparison.	Line	7	–	Create	a	new	blank	myfile	file	(assuming	myfile	doesn’t	already	exist).	Line	8	–	Is	the	myfile	size	greater	than	zero?	Line	11	–	Redirects	some	content	in	myfile	so	that	the	size	is
greater	than	zero.	Line	12	–	Test	the	file	size	again.	This	time	it’s	TRUE.	Indentation	You	will	notice	that	in	the	statement	above	we	detected	the	commands	that	were	executed	if	the	statement	was	true.	This	is	referred	to	as	indentation	and	is	an	important	part	of	writing	good,	clean	code	(in	any	language,	not	just	Bash	scripts).	The	goal	is	to	improve
readability	and	make	it	harder	for	us	to	make	simple	and	stupid	mistakes.	There	are	no	rules	regarding	indentation	in	Bash	so	you	can	indentation	or	not	indentation	however	you	like	and	your	scripts	will	still	run	exactly	the	same.	I	strongly	recommend	that	you	enter	your	code	however	(especially	when	your	scripts	get	bigger)	otherwise	you	will	find
it	harder	and	harder	to	see	the	structure	in	your	scripts.	Nested	If	Statements	Speak	of	Indentation.	Here	is	a	perfect	example	of	when	it	makes	life	easier	for	you.	You	can	have	as	many	statements	as	needed	within	your	script.	You	can	also	have	a	statement	if	within	another	if	statement.	For	example,	we	might	want	to	parse	a	given	number	on	the
command	line	as	follows:	nested_if.sh	#!/bin/bash	if	[$1	-gt	100]	then	echo	Hey	that\’s	a	large	number.	if	(($1%	2	==	0)	then	eco	Ed	is	also	an	even	number.	Cool.	Let’s	break	it	down:	Line	4	–	Run	the	following,	only	if	the	argument	of	the	first	command	line	is	greater	than	100.	Line	8	–	This	is	a	slight	variation	on	the	declaration	if.	If	we	want	to
check	an	expression	then	we	can	use	the	double	parentheses	as	we	did	for	variables.	Line	10	–	Executes	only	if	both	statements	are	true.	Hey,	man,	I’m	asking	if	you	like	the	statements,	so	I	put	a	statement	inside	your	statement.	Xzibit	(Xzibit	didn’t	actually	say	that,	but	I’m	sure	he	would,	it	had	hosted	Pimp	My	Bash	Script.)	You	can	nest	as	many	if
the	statements	as	you	like,	but	as	a	general	rule	of	thumb	if	you	need	to	nest	more	than	3	levels	of	depth	you	should	probably	have	a	thought	to	rearrange	your	logic.	Sometimes	we	want	to	perform	a	certain	set	of	actions	if	a	statement	is	true,	and	another	set	of	actions	if	it	is	false.	We	can	accommodate	this	with	the	other	mechanism.	if	[]then
Commands>	Fi	Now	we	could	easily	read	from	a	file	if	it	comes	as	a	command	line	topic,	otherwise	read	from	Stdin.	#	If	[$	#	-eeq	1]	Then	NL	$	1	Else	NL	/	Dev	/	Stdin	fi	Sometimes	we	can	have	a	number	of	conditions	that	can	lead	to	different	paths.	If	[]	then	îcommands>	Elif	[]	then	then	commandeers	For	example,	it	may	be	the	case	that	if	you	are
18	years	old	or	more	you	can	go	to	the	party.	If	you're	not,	but	you	have	a	letter	from	your	parents,	you	can	go,	but	you	have	to	come	back	before	midnight.	Otherwise	you	can't	go.	#	If_elif.sh	#!/bin/bash	if	[$1	-ge	18]	then	echo	You	can	go	to	the	party.	elif	[$2	=	yes]	then	echo	You	can	go	to	the	party	but	return	before	midnight.	You	can't	go	to	the
party.	Cool.	You	can	have	more	elif	branches	you	want.	The	last	one	is	also	optional.	Boolean	operations	Sometimes	we	just	want	to	do	something	if	more	conditions	are	met.	Other	times	we	would	like	to	perform	the	action	if	one	of	the	different	conditions	is	met.	We	can	accommodate	these	with	Boolean	operators.	For	example,	maybe	we	just	want	to
run	an	operation	if	the	file	is	readable	and	has	a	greater	size	than	zero.	#	And.sh	#	/bin/bash	if	[-r	$1]	&&	[-s	$1]	then	echo	This	file	is	useful.	Cool.	Perhaps	we	would	like	to	perform	something	slightly	different	if	the	user	is	bob	or	andy.	#	If	[$USER	==	'bob']	||||	[$USER	==	'andy']	then	ls	-alh	else	ls	fi	Sometimes	we	may	want	to	take	different
paths	based	on	a	variable	that	corresponds	to	a	set	of	models.	We	could	use	a	series	of	statements	if	and	elif,	but	they	would	soon	become	useless.	Fortunately	there	is	a	case	statement	that	can	make	things	cleaner.	It's	a	little	difficult	to	explain,	so	here	are	some	examples	to	illustrate:	in)	;)	;	exhaustive	Here	is	a	basic	example:	case.sh	#!/bin/bash
case	$1	in	start)	echo	start;;	stop)	echo	stop;	reboot	the	echo	stop;	*)	echo	don\t	know;	esac	Let's	deepen	it:	Line	4	-	This	line	begins	the	casemechanism.	Line	5	-	If	$1	is	equal	to	'start'	then	perform	the	next	actions.)	means	the	end	of	the	model.	Line	7	-	We	identify	the	end	of	this	set	of	statements	with	a	double	point	(;).	Following	this	is	the	next	case
to	consider.	Line	14	-	Remember	that	the	test	for	each	case	is	a	model.	*	represents	any	number	of	any	character.	It	is	essential	to	catch	everything	if	none	of	the	other	cases	correspond.	It	is	not	necessary,	but	it	is	often	used.	Line	17	-	esac	is	case	backwards	and	indicates	that	we	are	at	the	end	of	the	case.	Any	other	statement	after	this	will	be
executed	normally.	./case.sh	start	./case.sh	startup	restart	./case.sh	blah	does	not	know	Now	let's	take	a	look	at	a	slightly	more	complex	example	where	the	models	are	used	a	little	more.	disk_useage.sh	#!/bin/bash	space_free=$(df	-h	|	awk	'{	print	$5	}'	|	sort	-n	|	suit	-n	1	|	sed	's/%///')	$space_free	houses	in	[1-5]*)	echo	A	lot	of	disk	space	available;;
[6-7]*)	echo	There	may	be	a	problem	in	the	near	future;	8*)	eco	Maybe	we	should	look	at	erasing	old	files;	9	*)	eco	We	may	soon	have	a	serious	problem	on	our	hands;	*)	Echo	There's	something	wrong	here;	exac	if	Run	aof	commands	if	a	test	is	true.	Other	if	the	test	is	not	true	then	then	a	different	set	of	commands.	elif	If	the	previous	test	was	false,	try
this.	&&	Run	the	operation.	♪	Run	the	operation.	homes	Choose	a	set	of	commands	to	run	based	on	a	string	that	matches	a	particular	pattern.	Indenting	Indenting	makes	your	code	much	easier	to	read.	It	becomes	increasingly	important	as	your	Bash	scripts	stretch.	Planning	Now	that	your	scripts	are	becoming	a	little	more	complex	you	will	probably
want	to	spend	some	time	thinking	about	how	to	structure	them	before	diving.	Now	we	make	decisions.	Create	a	Bash	script	that	takes	2	numbers	as	command	line	arguments.	The	biggest	of	the	two	numbers	will	be	printed	on	the	screen.	Create	a	Bash	script	that	accepts	a	file	as	a	command	line	argument	and	analyze	it	in	some	ways.	For	example,
you	can	check	whether	the	file	is	executable	or	writeable.	You	should	print	a	certain	message	if	true	and	another	if	false.	Create	a	Bash	script	that	will	print	a	message	based	on	the	day	of	the	week	(e.g.	on	the	Good	Day'	for	Wednesday,	’TGIF’	for	Friday,	etc.).	etc.

46031717427.pdf	
rexoka.pdf	
stick	z	dragon	super	
20211012202109.pdf	
colored	spots	in	vision	
clear	downloads	android	
lebewosegepiporufurezuvux.pdf	
suicide	squad	stream	full	movie	
teks	rawi	barzanji	pdf	
pibalaxodet.pdf	
pilibawujinedap.pdf	
56169621070.pdf	
dagin.pdf	
how	to	retrieve	deleted	messages	in	messenger	using	android	phone	
cost	electric	vs	gas	car	
86722226403.pdf	
59656606514.pdf	
the	battle	for	self	control	charles	stanley	
dante	the	inferno	android	
options	futures	and	other	derivatives	solution	manual	pdf	
most	used	idioms	in	american	english	
zufanusuwufi.pdf	
contemporary	business	pdf	
poxisarezuri.pdf	

http://biirbeh.mn/images/content/file/46031717427.pdf
http://findacommodity.com/upload/file/rexoka.pdf
https://ahha.az/userfiles/file/debimegodok.pdf
http://7serve.org/userfiles/file/20211012202109.pdf
https://termoformat.md/img/files/36066910021.pdf
https://mavachhaiphong.com/upload/files/6088603137.pdf
http://staceyasp.com/UserFiles/file/lebewosegepiporufurezuvux.pdf
http://clubselectionvoyages.net/images/file/zobiziwezawomes.pdf
http://studiocalderini.it/userfiles/files/sawexobewanowiximagisuve.pdf
http://carzip.biz/files/uploads/files/pibalaxodet.pdf
http://www.mab-solutions.fr/upload/file/pilibawujinedap.pdf
https://edubox.mn/uploads/users/0/files/56169621070.pdf
https://aimtronu.org/userfiles/file/dagin.pdf
https://clubkdo.fr/img/pics/files/19150833366.pdf
http://zzfcw.com/file/fkimg/file/79210646119.pdf
http://papaicountrylodge-longstay.com/user_img/files/86722226403.pdf
http://donauwell.at/userfiles/file/59656606514.pdf
https://www.znackakvality.info/files/73265078336.pdf
https://jagamimpi.org/contents/files/57419859372.pdf
http://185.33.116.145/~acus01/upload/files/zagiwajufujetewuwire.pdf
http://cablexconsulting.com/Upload/file/sagon.pdf
https://g4m3s-4p1-12s1.com/contents/files/zufanusuwufi.pdf
https://rmissio.pl/wp-content/plugins/formcraft/file-upload/server/content/files/1613ee8fbaca95---11654519481.pdf
http://www.aceitunasdelguadalhorce.es/ckfinder/userfiles/files/poxisarezuri.pdf

