
	

https://wopan.nurepikis.com/228115476578376672611894015789559331864504?kutodujugusuxejudagoberaporadipinatumajedebuxuxu=mefozubomozufizikifaxewetamirixitenivogamuzesazodubuwadaletesugunizimijanogasibizoduvanasubimaxugidesotorepepifabetivipeginegolubajepuzopojabusatomukotazobekavexutizakezojisoxevazizufanedafojeleminuxakenerikip&utm_kwd=python+iterate+over+dictionary+key+value+pairs&woluluzagotenepubadimuxajewigefivulirogalatugezewowujalosilawifilovajul=wagabesulovenolapixalozusosumiworokapixagaxaxoketopineropaxafumukotuloxigelujemagitopotodozekokonitomidawelawidiruturikakanupifijo

In	this	article,	we	will	cover	How	to	Iterate	Through	a	Dictionary	in	Python.		To	Loop	through	values	in	a	dictionary	you	can	use	built-in	methods	like	values(),	items()	or	even	directly	iterate	over	the	dictionary	to	access	values	with	keys.How	to	Loop	Through	a	Dictionary	in	PythonThere	are	multiple	ways	to	iterate	through	a	dictionary,	depending	if
you	need	key,	value	or	both	key-value	pairs.Iterate	through	ValueTo	iterate	through	all	values	of	a	dictionary	in	Python	using	.values(),	you	can	employ	a	for	loop,	accessing	each	value	sequentially.	This	method	allows	you	to	process	or	display	each	individual	value	in	the	dictionary	without	explicitly	referencing	the	corresponding	keys.Example:	In	this
example,	we	are	using	the	values()	method	to	print	all	the	values	present	in	the	dictionary.	Python	#	create	a	python	dictionary	d	=	{"name":	"Geeks",	"topic":	"dict",	"task":	"iterate"}	#	loop	over	dict	values	for	val	in	d.values():	print(val)	Iterate	through	keysIn	Python,	just	looping	through	the	dictionary	provides	you	its	keys.	You	can	also	iterate	keys
of	a	dictionary	using	built-in	`.keys()`	method.	Python	#	create	a	python	dictionary	d	=	{"name":	"Geeks",	"topic":	"dict",	"task":	"iterate"}	#	default	loooping	gives	keys	for	keys	in	d:	print(keys)	#	looping	through	keys	for	keys	in	d.keys():	print(keys)	Iterate	through	both	keys	and	valuesYou	can	use	the	built-in	items()	method	to	access	both	keys	and
items	at	the	same	time.	items()	method	returns	the	view	object	that	contains	the	key-value	pair	as	tuples.		Python	#	create	a	python	dictionary	d	=	{"name":	"Geeks",	"topic":	"dict",	"task":	"iterate"}	#	iterating	both	key	and	values	for	key,	value	in	d.items():	print(f"{key}:	{value}")	Iterating	Python	Dictionary	Using	map()	and	dict.getThe	method
accesses	keys	in	a	dictionary	using	`map()`	and	`dict.get()`.	It	applies	the	`dict.get`	function	to	each	key,	returning	a	map	object	of	corresponding	values.	This	allows	direct	iteration	over	the	dictionary	keys,	efficiently	obtaining	their	values	in	a	concise	manner.Example:	In	this	example,	the	below	code	uses	the	`map()`	function	to	create	an	iterable	of
values	obtained	by	applying	the	`get`	method	to	each	key	in	the	`statesAndCapitals`	dictionary.	It	then	iterates	through	this	iterable	using	a	`for`	loop	and	prints	each	key.	Python	statesAndCapitals	=	{	'Gujarat':	'Gandhinagar',	'Maharashtra':	'Mumbai',	'Rajasthan':	'Jaipur',	'Bihar':	'Patna'	}	map_keys	=	map(statesAndCapitals.get,	statesAndCapitals)
for	key	in	map_keys:	print(key)	Output	:Gandhinagar	Mumbai	Jaipur	Patna	Iterate	Python	Dictionary	using	zip()	FunctionUsing	`zip()`	in	Python,	you	can	access	the	keys	of	a	dictionary	by	iterating	over	a	tuple	of	the	dictionary's	keys	and	values	simultaneously.	This	method	creates	pairs	of	keys	and	values,	allowing	concise	iteration	over	both
elements.Example:	In	this	example,	the	zip()	function	pairs	each	state	with	its	corresponding	capital,	and	the	loop	iterates	over	these	pairs	to	print	the	information	Python	statesAndCapitals	=	{	'Gujarat':	'Gandhinagar',	'Maharashtra':	'Mumbai',	'Rajasthan':	'Jaipur',	'Bihar':	'Patna'	}	for	state,	capital	in	zip(statesAndCapitals.keys(),
statesAndCapitals.values()):	print(f'The	capital	of	{state}	is	{capital}')	Output	:The	capital	of	Gujarat	is	Gandhinagar	The	capital	of	Maharashtra	is	Mumbai	The	capital	of	Rajasthan	is	Jaipur	The	capital	of	Bihar	is	Patna	Dictionary	iteration	in	Python	by	unpacking	the	dictionaryTo	access	keys	using	unpacking	of	a	dictionary,	you	can	use	the	asterisk
(*)	operator	to	unpack	the	keys	into	a	list	or	another	iterable.Example:	In	this	example,	you	will	see	that	we	are	using	*	to	unpack	the	dictionary.	The	*dict	method	helps	us	to	unpack	all	the	keys	in	the	dictionary.	Python	statesAndCapitals	=	{	'Gujarat':	'Gandhinagar',	'Maharashtra':	'Mumbai',	'Rajasthan':	'Jaipur',	'Bihar':	'Patna'	}	keys	=
[*statesAndCapitals]	values	=	'{Gujarat}-{Maharashtra}-{Rajasthan}-{Bihar}'.format(*statesAndCapitals,	**statesAndCapitals)	print(keys)	print(values)	Output:['Gujarat',	'Maharashtra',	'Rajasthan',	'Bihar']	Gandhinagar-Mumbai-Jaipur-Patna	Iterating	through	the	dictionary	is	an	important	task	if	you	want	to	access	the	keys	and	values	of	the
dictionary.	In	this	tutorial,	we	have	mentioned	several	ways	to	iterate	through	all	items	of	a	dictionary.	Important	methods	like	values(),	items(),	and	keys()	are	mentioned	along	with	other	techniques.	In	Python,	dictionaries	are	a	powerful	data	structure	that	stores	data	in	key-value	pairs.	Iterating	over	a	dictionary	is	a	common	task	in	many
programming	scenarios,	whether	you	want	to	access	the	values,	keys,	or	both.	Understanding	how	to	iterate	over	dictionaries	efficiently	can	greatly	enhance	your	Python	programming	skills	and	help	you	write	more	concise	and	effective	code.	This	blog	post	will	explore	the	fundamental	concepts,	usage	methods,	common	practices,	and	best	practices
of	iterating	over	dictionaries	in	Python.	2.	Table	of	Contents	3.	Fundamental	Concepts	of	Python	Iterating	Dictionary	A	dictionary	in	Python	is	an	unordered	collection	of	key-value	pairs.	When	iterating	over	a	dictionary,	we	can	access	either	the	keys,	the	values,	or	both	the	keys	and	values	together.	Python	provides	several	built-in	methods	and
techniques	to	perform	these	iterations.	The	basic	idea	behind	iterating	over	a	dictionary	is	to	visit	each	key-value	pair	(or	just	the	keys	or	values)	one	by	one,	allowing	us	to	perform	operations	such	as	printing,	modifying,	or	filtering	the	data	stored	in	the	dictionary.	4.	Usage	Methods	of	Iterating	Dictionary	4.1	Iterating	Keys	To	iterate	over	the	keys	of
a	dictionary,	you	can	simply	use	a	for	loop	directly	on	the	dictionary.	my_dict	=	{'name':	'John',	'age':	30,	'city':	'New	York'}	for	key	in	my_dict:	print(key)	In	the	above	code,	the	for	loop	iterates	over	the	keys	of	the	my_dict	dictionary.	You	can	also	use	the	keys()	method	explicitly,	which	returns	a	view	object	that	displays	a	list	of	all	the	keys	in	the
dictionary.	my_dict	=	{'name':	'John',	'age':	30,	'city':	'New	York'}	for	key	in	my_dict.keys():	print(key)	4.2	Iterating	Values	To	iterate	over	the	values	of	a	dictionary,	you	can	use	the	values()	method.	my_dict	=	{'name':	'John',	'age':	30,	'city':	'New	York'}	for	value	in	my_dict.values():	print(value)	The	values()	method	returns	a	view	object	that	contains
all	the	values	in	the	dictionary.	4.3	Iterating	Key-Value	Pairs	To	iterate	over	both	keys	and	values	simultaneously,	you	can	use	the	items()	method.	my_dict	=	{'name':	'John',	'age':	30,	'city':	'New	York'}	for	key,	value	in	my_dict.items():	print(f"{key}:	{value}")	The	items()	method	returns	a	view	object	that	contains	tuples,	where	each	tuple	contains	a
key	and	its	corresponding	value.	5.	Common	Practices	5.1	Filtering	Elements	While	Iterating	You	can	filter	elements	while	iterating	over	a	dictionary.	For	example,	if	you	want	to	find	all	keys	whose	values	are	greater	than	a	certain	number.	my_dict	=	{'a':	10,	'b':	20,	'c':	30,	'd':	40}	for	key,	value	in	my_dict.items():	if	value	>	20:	print(f"{key}:
{value}")	5.2	Modifying	Dictionary	During	Iteration	In	general,	it's	not	a	good	idea	to	modify	a	dictionary	while	iterating	over	it	directly.	This	can	lead	to	unpredictable	results.	However,	you	can	create	a	new	dictionary	based	on	the	original	one.	my_dict	=	{'a':	10,	'b':	20,	'c':	30}	new_dict	=	{}	for	key,	value	in	my_dict.items():	new_value	=	value	*	2
new_dict[key]	=	new_value	print(new_dict)	6.	Best	Practices	6.1	Using	items()	for	Key-Value	Iteration	When	you	need	to	access	both	keys	and	values	in	a	dictionary,	always	use	the	items()	method.	It	is	more	concise	and	easier	to	read	compared	to	iterating	over	keys	and	then	accessing	values	separately.	6.2	Iterating	in	Sorted	Order	If	you	need	to
iterate	over	a	dictionary	in	sorted	order,	you	can	use	the	sorted()	function.	For	example,	to	iterate	over	keys	in	sorted	order:	my_dict	=	{'c':	30,	'a':	10,	'b':	20}	for	key	in	sorted(my_dict.keys()):	print(f"{key}:	{my_dict[key]}")	If	you	want	to	sort	based	on	values,	you	can	use	a	custom	sorting	function	with	sorted()	and	items().	my_dict	=	{'c':	30,	'a':	10,
'b':	20}	sorted_dict	=	sorted(my_dict.items(),	key=lambda	item:	item[1])	for	key,	value	in	sorted_dict:	print(f"{key}:	{value}")	7.	Conclusion	Iterating	over	dictionaries	in	Python	is	a	fundamental	skill	that	every	Python	programmer	should	master.	By	understanding	the	different	methods	available	for	iterating	keys,	values,	and	key-value	pairs,	as	well
as	common	practices	and	best	practices,	you	can	write	more	efficient	and	maintainable	code.	Whether	you	are	working	on	data	analysis,	web	development,	or	any	other	Python	project,	the	ability	to	iterate	over	dictionaries	effectively	will	be	invaluable.	8.	References	In	Python,	a	Dictionary	is	a	data	structure	that	stores	the	data	in	the	form	of	key-
value	pairs.	It	is	a	mutable	(which	means	once	created	we	modify	or	update	its	value	later	on)	and	unordered	data	structure	in	Python.	There	is	a	thing	to	keep	in	mind	while	creating	a	dictionary	every	key	in	the	dictionary	must	be	unique	however,	we	can	assign	the	same	values	to	different	keys.	In	this	article,	we	are	going	to	cover	some	basic	to
advanced	ways	of	iterating	over	a	dictionary's	keys	and	values	in	Python.	We	will	be	covering	all	the	methods	to	iterate	Dictionary	keys	and	values	with	clear	and	concise	examples.	Syntax	d	=	{'key1':'value1','key2':'value2',..............}Note	:	{	}	is	used	in	the	case	of	Python's	Set	as	well	as	Python's	Dictionary.	Iterate	Dictionary's	Key,	ValueLet's	discuss
some	of	the	common	as	well	as	efficient	methods	to	iterate	dictionary	key,	and	value.	Using	Iteration	MethodUsing	.items()	FunctionUsing	.keys()	and	.values()Python	Dictionary	Key-Value	Using	Iteration	In	this	method,	we	will	simply	iterate	over	dictionary	keys	and	retrieve	their	corresponding	values.	Below,	Python	code	defines	a	function	`dict_iter`
that	iterates	over	the	keys	of	a	dictionary	and	then	demonstrates	its	usage	on	a	specific	dictionary.	Python3	#function	to	iterate	over	each	keys	and	its	#corresponding	values	def	dict_iter(d):	for	i	in	d:	print('KEYS:	{}	and	VALUES:	{}'.format(i,d[i]))	#Main	Function	if	__name__	==	"__main__":	d	=	{"Vishu":1,"Aayush":2,"Neeraj":3,"Sumit":4}	#calling
function	created	above	dict_iter(d)	OutputKEYS:	Vishu	and	VALUES:	1	KEYS:	Aayush	and	VALUES:	2	KEYS:	Neeraj	and	VALUES:	3	KEYS:	Sumit	and	VALUES:	4Python	Dictionary	Key-Value	Using	.items()In	this	example	we	will	be	using	Python's	dictionary	function	.items()	.	This	function	will	return	a	list	consists	of	dictionary's	key	and	values.	In
below	code	,	function	`dict_iter`	iterates	over	the	keys	and	values	of	a	dictionary,	printing	each	key-value	pair	along	with	the	dictionary	items.	Python3	#function	to	iterate	over	each	keys	and	its	#corresponding	values	def	dict_iter(d):	for	i,j	in	d.items():	print('KEYS:	{}	and	VALUES:	{}'.format(i,j))	#.items()	print("")	print(d.items())	#Main	Function	if
__name__	==	"__main__":	d	=	{"Vishu":	1,"Aayush":2,"Neeraj":3,"Sumit":4}	#calling	function	created	above	dict_iter(d)	OutputKEYS:	Vishu	and	VALUES:	1	KEYS:	Aayush	and	VALUES:	2	KEYS:	Neeraj	and	VALUES:	3	KEYS:	Sumit	and	VALUES:	4	dict_items([('Vishu',	1),	('Aayush',	2),	('Neeraj',	3),	('Sumit',	4)])Iterate	Dictionary	Key,	Value	Using	.keys()
and	.values()In	this	example,	we	are	going	to	use	Python	dictionary's	two	most	useful	methods	i.e.	.keys()	and	.values().	We	are	using	these	methods	to	iterate	over	keys	and	values	of	dictionaries	separately.	In	below	code	,	function	`dict_iter`	iterates	over	the	keys	and	values	of	a	dictionary	separately.	Python3	#function	to	iterate	over	each	keys	and
its	#corresponding	values	def	dict_iter(d):	#iterating	over	keys	and	values	separately.	for	i	in	d.keys():	print('KEYS:	',i)	for	i	in	d.values():	print('VALUES:	',i)	#Main	Function	if	__name__	==	"__main__":	d	=	{"Vishu":1,"Aayush":2,"Neeraj":3,"Sumit":4}	#calling	function	created	above	dict_iter(d)	OutputKEYS:	Vishu	KEYS:	Aayush	KEYS:	Neeraj	KEYS:
Sumit	VALUES:	1	VALUES:	2	VALUES:	3	VALUES:	4ConclusionIn	Python,	Dictionary	is	a	data	structure	used	to	store	data	in	form	of	key	value	pairs.	Each	created	keys	of	a	dictionary	must	be	unique	however	we	can	duplicate	the	value	part.	Dictionary	is	a	mutable	(which	means	once	created	we	modify	or	update	its	value	later	on)	and	unordered
collection	of	data.	We	can	created	a	dictionary	with	dict()	or	with	the	help	of	curly	braces.	Iterating	over	a	dictionary	in	Python	is	a	fundamental	skill	that	allows	you	to	efficiently	access	and	manipulate	key-value	pairs	within	this	versatile	data	structure.	By	iterating	through	a	dictionary,	you	can	perform	various	operations,	such	as	extracting	values,
updating	information,	or	applying	specific	logic	to	each	key-value	pair.	This	process	is	crucial	for	handling	and	processing	data	efficiently	in	Python	programs,	providing	a	dynamic	way	to	interact	with	the	contents	of	a	dictionary.	In	the	following	discussion,	we	will	explore	different	methods	and	techniques	for	iterating	over	dictionaries.		Table	of
contents	Iterating	through	a	dictionary	means	going	through	each	key-value	pair	one	by	one.	It’s	a	crucial	task	if	you	want	to	use	a	dictionary	properly	in	Python.	To	do	this,	there	are	several	commonly	used	methods	for	dictionary	iteration:	Use	keys()	to	iterate	through	keys.	Use	.values()	to	go	through	all	values.	Use	items()	to	iterate	through	key-
value	pairs.	Employ	a	for	loop	to	loop	through	the	dictionary.	Access	keys	using	map()	and	dict.get.	Access	keys	in	Python	using	zip().	Access	keys	through	the	unpacking	of	a	dictionary.	These	methods	provide	various	ways	to	navigate	and	work	with	the	contents	of	a	dictionary,	giving	you	flexibility	in	handling	data	in	your	Python	programs.	Using	the
keys()	method	in	Python	allows	you	to	iterate	through	the	keys	of	a	dictionary,	providing	a	straightforward	way	to	access	and	manipulate	the	dictionary’s	structure.	This	method	returns	a	view	object	that	displays	a	list	of	all	the	keys	in	the	dictionary.	Here’s	a	simple	example	demonstrating	how	to	use	keys()	for	dictionary	iteration:	#	Define	a	sample
dictionary	fruit_prices	=	{'apple':	1.0,	'banana':	0.75,	'orange':	1.5,	'grape':	2.0}	#	Iterate	through	keys	using	keys()	for	fruit	in	fruit_prices.keys():					print(f"The	price	of	{fruit}	is	{fruit_prices[fruit]}	dollars.")	In	this	example,	we	have	a	dictionary	fruit_prices	with	fruit	names	as	keys	and	their	corresponding	prices	as	values.	The	keys()	method	is
utilized	in	the	for	loop	to	iterate	through	each	key	(fruit)	in	the	dictionary.	Inside	the	loop,	we	access	the	corresponding	value	using	the	key	and	print	the	fruit	along	with	its	price.	By	using	keys(),	you	efficiently	traverse	the	keys	of	the	dictionary,	making	it	a	convenient	method	for	tasks	that	specifically	involve	working	with	the	keys	themselves.
Utilizing	the	values()	method	in	Python	provides	a	straightforward	approach	to	iterate	through	all	the	values	of	a	dictionary.	This	method	returns	a	view	object	containing	all	the	values	present	in	the	dictionary,	allowing	you	to	access	and	manipulate	the	data	without	explicitly	dealing	with	the	keys.	Let’s	explore	a	practical	example	of	how	to	use
values()	for	dictionary	iteration:	#	Define	a	sample	dictionary	fruit_prices	=	{'apple':	1.0,	'banana':	0.75,	'orange':	1.5,	'grape':	2.0}	#	Iterate	through	values	using	values()	for	price	in	fruit_prices.values():					print(f"The	price	of	a	fruit	is	{price}	dollars.")	In	this	example,	the	dictionary	fruit_prices	associates	fruit	names	with	their	respective	prices.	The
values()	method	is	employed	in	the	for	loop	to	iterate	through	each	value	in	the	dictionary.	Inside	the	loop,	we	print	a	statement	that	incorporates	the	current	price.	By	utilizing	values(),	you	can	efficiently	traverse	through	all	the	values	of	the	dictionary,	making	it	particularly	useful	when	your	task	involves	working	with	the	values	directly	rather	than
the	associated	keys.	This	method	enhances	the	flexibility	of	dictionary	manipulation	in	Python.	The	items()	method	in	Python	is	a	powerful	tool	for	iterating	through	key-value	pairs	in	a	dictionary.	It	provides	a	convenient	way	to	access	both	the	keys	and	their	corresponding	values	simultaneously,	allowing	for	effective	manipulation	of	the	entire
dictionary	structure.	Let’s	delve	into	a	practical	example	to	showcase	how	to	use	items()	for	dictionary	iteration:	#	Define	a	sample	dictionary	fruit_prices	=	{'apple':	1.0,	'banana':	0.75,	'orange':	1.5,	'grape':	2.0}	#	Iterate	through	key-value	pairs	using	items()	for	fruit,	price	in	fruit_prices.items():					print(f"The	price	of	{fruit}	is	{price}	dollars.")	In
this	example,	the	dictionary	fruit_prices	contains	fruit	names	as	keys	and	their	corresponding	prices	as	values.	The	items()	method	is	employed	in	the	for	loop	to	iterate	through	each	key-value	pair.	Inside	the	loop,	the	variables	fruit	and	price	are	used	to	represent	the	current	key	and	its	associated	value,	respectively.	This	allows	us	to	print	a
statement	that	includes	both	the	fruit	name	and	its	price.	By	using	items(),	you	gain	a	concise	and	efficient	way	to	navigate	through	the	entire	dictionary,	extracting	both	keys	and	values	as	needed.	This	method	is	particularly	useful	when	your	task	requires	simultaneous	access	to	both	components	of	each	key-value	pair.	Using	a	for	loop	in	Python	is	a
versatile	and	fundamental	technique	for	iterating	through	a	dictionary.	This	approach	provides	a	straightforward	means	of	accessing	each	key	in	the	dictionary,	enabling	effective	manipulation	of	the	data	stored	within.	Let’s	illustrate	the	usage	of	a	for	loop	to	loop	through	a	dictionary	with	a	practical	example:	#	Define	a	sample	dictionary	fruit_prices
=	{'apple':	1.0,	'banana':	0.75,	'orange':	1.5,	'grape':	2.0}	#	Loop	through	the	dictionary	using	a	for	loop	for	fruit	in	fruit_prices:					print(f"The	price	of	{fruit}	is	{fruit_prices[fruit]}	dollars.")	In	this	example,	the	dictionary	fruit_prices	contains	fruit	names	as	keys	and	their	corresponding	prices	as	values.	The	for	loop	is	employed	to	iterate	through
each	key	in	the	dictionary.	Inside	the	loop,	the	variable	fruit	represents	the	current	key,	allowing	us	to	access	the	corresponding	value	using	fruit_prices[fruit].	We	then	print	a	statement	that	includes	both	the	fruit	name	and	its	price.	Utilizing	a	for	loop	in	this	manner	simplifies	the	process	of	iterating	through	a	dictionary,	providing	a	clean	and
efficient	way	to	access	and	manipulate	the	data	it	holds.	This	technique	is	particularly	useful	when	you	are	primarily	interested	in	working	with	the	keys	of	the	dictionary.	In	Python,	you	can	access	the	keys	of	a	dictionary	using	the	map()	function	along	with	dict.get().	This	combination	provides	a	concise	and	efficient	way	to	apply	a	function	to	each
key	in	the	dictionary,	generating	a	new	iterable	containing	the	results.	Let’s	illustrate	this	approach	with	a	practical	example:	#	Define	a	sample	dictionary	fruit_prices	=	{'apple':	1.0,	'banana':	0.75,	'orange':	1.5,	'grape':	2.0}	#	Use	map()	and	dict.get()	to	access	keys	keys_result	=	map(fruit_prices.get,	fruit_prices)	#	Convert	the	result	to	a	list	for
visualization	keys_list	=	list(keys_result)	#	Print	the	keys	obtained	using	map()	and	dict.get()	print("Keys	obtained	using	map()	and	dict.get():",	keys_list)	In	this	example,	the	map()	function	is	applied	to	the	fruit_prices.get	method,	which	retrieves	the	value	for	each	key	in	the	dictionary.	The	result	is	then	converted	into	a	list	for	better	visualization.
This	list,	keys_list,	contains	the	keys	of	the	fruit_prices	dictionary.	Using	map()	in	conjunction	with	dict.get()	is	a	powerful	approach	when	you	need	to	perform	an	operation	on	each	key	of	the	dictionary	and	obtain	the	results	in	a	new	iterable.	It	enhances	the	flexibility	of	working	with	dictionaries	in	a	concise	and	expressive	manner.	In	Python,	the
zip()	function	offers	an	efficient	method	to	access	keys	from	a	dictionary.	By	using	zip()	in	conjunction	with	the	dictionary’s	keys,	you	can	create	pairs	of	keys	and	their	corresponding	values.	This	approach	provides	a	convenient	way	to	iterate	through	the	keys	without	directly	accessing	the	dictionary.	Let’s	dive	into	a	practical	example	to	demonstrate
how	to	access	keys	using	zip():	#	Define	a	sample	dictionary	fruit_prices	=	{'apple':	1.0,	'banana':	0.75,	'orange':	1.5,	'grape':	2.0}	#	Access	keys	using	zip()	keys_result	=	list(zip(fruit_prices.keys()))	#	Print	the	keys	obtained	using	zip()	print("Keys	obtained	using	zip():",	keys_result)	In	this	example,	the	zip()	function	applies	to	fruit_prices.keys(),
creating	pairs	of	keys	and	their	corresponding	values.	By	converting	the	result	into	a	list,	the	keys_result	variable	contains	the	keys	of	the	fruit_prices	dictionary.	Using	zip()	provides	a	clean	and	concise	way	to	access	keys,	and	it	is	especially	handy	when	you	want	to	work	with	key-value	pairs	as	tuples.	This	method	enhances	the	flexibility	of	iterating
through	dictionary	keys	in	a	manner	that	is	both	readable	and	expressive.	In	Python,	you	can	access	keys	from	a	dictionary	through	the	process	of	unpacking.	This	involves	extracting	the	keys	directly	from	the	dictionary	and	working	with	them	individually.	Unpacking	allows	for	a	straightforward	and	efficient	way	to	access	and	iterate	through	the	keys
without	explicitly	calling	any	specific	method.	Let’s	explore	a	practical	example	to	illustrate	how	to	access	keys	through	the	unpacking	of	a	dictionary:	#	Define	a	sample	dictionary	fruit_prices	=	{'apple':	1.0,	'banana':	0.75,	'orange':	1.5,	'grape':	2.0}	#	Access	keys	through	dictionary	unpacking	keys_result	=	[*fruit_prices]	#	Print	the	keys	obtained
through	unpacking	print("Keys	obtained	through	unpacking:",	keys_result)	In	this	example,	the	syntax	[*fruit_prices]	unpacks	the	dictionary,	extracting	all	its	keys.	The	resulting	keys_result	contains	a	list	of	the	keys	from	the	fruit_prices	dictionary.	Unpacking	provides	a	concise	and	readable	way	to	access	keys,	and	it	is	particularly	useful	when	you
want	a	simple	list	of	keys	without	the	need	for	additional	methods	or	functions.	This	approach	enhances	the	clarity	and	expressiveness	of	your	code	when	working	with	dictionaries	in	Python.	In	conclusion,	knowing	how	to	go	through	a	dictionary	in	Python	is	crucial	for	working	with	data.	We’ve	explored	different	ways,	like	using	keys(),	values(),	and
items(),	or	employing	techniques	such	as	for	loops,	map(),	dict.get(),	zip(),	and	unpacking.	These	methods	provide	diverse	ways	to	handle	dictionaries,	allowing	you	to	pick	the	one	that	fits	your	needs	best.	Learning	how	to	iterate	over	dictionaries	is	a	key	skill	that	makes	working	with	data	in	Python	much	easier,	whether	you’re	new	to	programming
or	already	experienced.	It’s	like	having	a	powerful	tool	to	navigate	and	manipulate	information	effectively	in	your	Python	programs.	Ready	to	elevate	your	Python	skills?	Join	our	FREE	Python	Course	today	and	unlock	your	potential	in	programming	and	data	science!	You	can	read	more	articles	related	to	Python	Dictionaries:	Q1:	How	do	you	iterate
over	keys	in	a	dictionary?	A:	You	can	use	a	for	loop	to	iterate	over	the	keys	of	a	dictionary.	Example:my_dict	=	{‘a’:	1,	‘b’:	2}for	key	in	my_dict:print(key)	Q2:	What	method	is	used	to	iterate	over	dictionary	keys?	A:	The	keys()	method	can	be	used	to	get	an	iterable	of	keys	for	a	dictionary.Example:my_dict	=	{‘a’:	1,	‘b’:	2}for	key	in
my_dict.keys():print(key)	Q3:	How	do	you	iterate	over	values	in	a	dictionary?	A:	You	can	use	a	for	loop	to	iterate	over	the	values	of	a	dictionary.	Example:my_dict	=	{‘a’:	1,	‘b’:	2}for	value	in	my_dict.values():print(value)	Q4:	Is	there	a	method	to	get	an	iterable	of	dictionary	values?	A:	Yes,	the	values()	method	can	be	used	to	get	an	iterable	of	values	for
a	dictionary.	Example:my_dict	=	{‘a’:	1,	‘b’:	2}for	value	in	my_dict.values():print(value)	Q5:	How	to	iterate	over	key-value	pairs	in	a	dictionary?	A:	You	can	use	a	for	loop	to	iterate	over	the	items	of	a	dictionary,	which	returns	key-value	pairs.	Example:my_dict	=	{‘a’:	1,	‘b’:	2}for	key,	value	in	my_dict.items():print(f’Key:	{key},	Value:	{value}’)	How	can
financial	brands	set	themselves	apart	through	visual	storytelling?	Our	experts	explain	how.Learn	MoreThe	Motorsport	Images	Collections	captures	events	from	1895	to	today’s	most	recent	coverage.Discover	The	CollectionCurated,	compelling,	and	worth	your	time.	Explore	our	latest	gallery	of	Editors’	Picks.Browse	Editors'	FavoritesHow	can	financial
brands	set	themselves	apart	through	visual	storytelling?	Our	experts	explain	how.Learn	MoreThe	Motorsport	Images	Collections	captures	events	from	1895	to	today’s	most	recent	coverage.Discover	The	CollectionCurated,	compelling,	and	worth	your	time.	Explore	our	latest	gallery	of	Editors’	Picks.Browse	Editors'	FavoritesHow	can	financial	brands
set	themselves	apart	through	visual	storytelling?	Our	experts	explain	how.Learn	MoreThe	Motorsport	Images	Collections	captures	events	from	1895	to	today’s	most	recent	coverage.Discover	The	CollectionCurated,	compelling,	and	worth	your	time.	Explore	our	latest	gallery	of	Editors’	Picks.Browse	Editors'	Favorites	Understanding	Python
Dictionaries	Python	dictionaries	are	a	powerful	data	structure	that	allow	you	to	store	and	access	data	using	key-value	pairs.	Unlike	lists	or	tuples,	dictionaries	are	unordered,	meaning	that	the	elements	are	not	stored	in	any	particular	order.	This	allows	for	efficient	lookup	and	retrieval	of	values	based	on	their	associated	keys.	To	create	a	dictionary	in
Python,	you	use	curly	braces	{}	and	separate	each	key-value	pair	with	a	colon.	For	example:	my_dict	=	{'name':	'John',	'age':	25,	'city':	'New	York'}	In	this	example,	the	keys	are	'name',	'age',	and	'city',	and	the	corresponding	values	are	'John',	25,	and	'New	York'	respectively.	You	can	also	create	an	empty	dictionary	by	simply	using	empty	curly	braces.
Dictionaries	are	mutable,	meaning	that	you	can	modify	their	contents	by	adding,	updating,	or	removing	key-value	pairs.	You	can	access	the	value	associated	with	a	particular	key	by	using	square	brackets	[]	and	specifying	the	key.	For	example:	print(my_dict['name'])	#	Output:	John	If	you	try	to	access	a	key	that	does	not	exist	in	the	dictionary,	a
KeyError	will	be	raised.	To	avoid	this,	you	can	use	the	get()	method,	which	returns	None	if	the	key	is	not	found,	or	a	default	value	that	you	specify.	For	example:	print(my_dict.get('name'))	#	Output:	John	print(my_dict.get('gender'))	#	Output:	None	print(my_dict.get('gender',	'Unknown'))	#	Output:	Unknown	You	can	loop	through	the	keys,	values,	or
key-value	pairs	of	a	dictionary	using	various	methods.	One	common	method	is	to	use	the	items()	method,	which	returns	a	list	of	tuples	containing	the	key-value	pairs.	For	example:	for	key,	value	in	my_dict.items():	print(key,	value)	This	will	output:	name	John	age	25	city	New	York	Another	method	is	to	use	the	keys()	method,	which	returns	a	list	of	all
the	keys	in	the	dictionary.	You	can	then	iterate	over	these	keys	to	access	the	corresponding	values.	For	example:	for	key	in	my_dict.keys():	print(key,	my_dict[key])	This	will	produce	the	same	output	as	before.	Lastly,	you	can	use	the	values()	method	to	loop	through	all	the	values	in	the	dictionary.	For	example:	for	value	in	my_dict.values():	print(value)
This	will	output:	John	25	New	York	Related	Article:	Optimizing	FastAPI	Applications:	Modular	Design,	Logging,	and	TestingBasic	Operations:	Accessing	and	Modifying	Dictionary	Elements	In	this	chapter,	we	will	explore	the	basic	operations	for	accessing	and	modifying	elements	in	a	Python	dictionary.	Dictionaries	in	Python	are	mutable,	meaning	that
you	can	change	their	values	or	add	new	key-value	pairs.	To	access	a	value	in	a	dictionary,	you	can	use	square	brackets	and	provide	the	key	of	the	desired	element.	For	example:	#	Define	a	dictionary	student	=	{'name':	'John',	'age':	20,	'grade':	'A'}	#	Accessing	values	print(student['name'])	#	Output:	John	print(student['age'])	#	Output:	20	In	the	code
snippet	above,	we	created	a	dictionary	called	student	with	keys	'name',	'age',	and	'grade'.	We	accessed	the	values	of	the	keys	'name'	and	'age'	using	square	brackets.	If	you	try	to	access	a	key	that	doesn't	exist	in	the	dictionary,	a	KeyError	will	be	raised.	To	avoid	this,	you	can	use	the	get()	method,	which	allows	you	to	provide	a	default	value	if	the	key
is	not	found:	#	Accessing	a	non-existent	key	print(student.get('city'))	#	Output:	None	#	Accessing	a	non-existent	key	with	a	default	value	print(student.get('city',	'Unknown'))	#	Output:	Unknown	In	the	first	get()	example,	we	tried	to	access	the	key	'city',	which	doesn't	exist	in	the	dictionary.	The	method	returned	None.	In	the	second	example,	we
provided	a	default	value	of	'Unknown',	which	was	returned	since	the	key	'city'	is	not	present	in	the	dictionary.	To	modify	the	value	of	a	key	in	a	dictionary,	you	can	simply	assign	a	new	value	to	it:	#	Modifying	a	value	student['grade']	=	'B'	print(student['grade'])	#	Output:	B	In	the	code	snippet	above,	we	changed	the	value	of	the	key	'grade'	from	'A'	to
'B'.	The	new	value	is	then	printed.	If	the	key	doesn't	exist	in	the	dictionary,	assigning	a	value	to	it	will	create	a	new	key-value	pair:	#	Adding	a	new	key-value	pair	student['city']	=	'New	York'	print(student['city'])	#	Output:	New	York	In	the	code	snippet	above,	we	added	a	new	key-value	pair	to	the	dictionary.	The	key	'city'	with	the	value	'New	York'	is
now	present	in	the	dictionary.	These	are	the	basic	operations	for	accessing	and	modifying	dictionary	elements	in	Python.	Now	that	you	know	how	to	work	with	dictionary	values,	you	can	move	on	to	more	complex	operations	such	as	iterating	and	looping	through	dictionaries.	Looping	Through	Dictionary	Keys	When	working	with	Python	dictionaries,	it
is	often	necessary	to	iterate	over	the	keys	of	the	dictionary	to	perform	certain	operations.	In	this	section,	we	will	explore	different	ways	to	loop	through	dictionary	keys.	One	way	to	loop	through	dictionary	keys	is	by	using	a	for	loop.	We	can	directly	iterate	over	the	dictionary	object,	which	will	return	the	keys	of	the	dictionary.	Here's	an	example:	#
Creating	a	dictionary	fruits	=	{"apple":	1,	"banana":	2,	"orange":	3}	#	Looping	through	keys	using	a	for	loop	for	key	in	fruits:	print(key)	Output:	apple	banana	orange	In	the	above	example,	the	for	loop	iterates	over	the	dictionary	fruits	and	assigns	each	key	to	the	variable	key.	We	then	simply	print	the	value	of	key.	Another	way	to	loop	through
dictionary	keys	is	by	using	the	keys()	method.	This	method	returns	a	view	object	that	contains	the	keys	of	the	dictionary.	We	can	then	iterate	over	this	view	object	using	a	for	loop.	Here's	an	example:	#	Creating	a	dictionary	fruits	=	{"apple":	1,	"banana":	2,	"orange":	3}	#	Looping	through	keys	using	the	keys()	method	for	key	in	fruits.keys():
print(key)	Output:	apple	banana	orange	In	this	example,	we	use	the	keys()	method	to	obtain	a	view	object	containing	the	keys	of	the	fruits	dictionary.	We	then	loop	through	this	view	object	using	a	for	loop	and	print	each	key.	We	can	also	use	the	dict.keys()	method	to	check	if	a	particular	key	exists	in	the	dictionary.	This	can	be	useful	when	we	want	to
perform	certain	operations	based	on	the	presence	of	a	specific	key.	Here's	an	example:	#	Creating	a	dictionary	fruits	=	{"apple":	1,	"banana":	2,	"orange":	3}	#	Checking	if	a	key	exists	in	the	dictionary	if	"apple"	in	fruits.keys():	print("The	key	'apple'	exists	in	the	dictionary.")	Output:	The	key	'apple'	exists	in	the	dictionary.	In	this	example,	we	use	the
in	keyword	to	check	if	the	key	"apple"	exists	in	the	dictionary	fruits.	If	it	does,	we	print	a	message	indicating	its	presence.	To	summarize,	looping	through	dictionary	keys	in	Python	can	be	done	using	a	for	loop	or	by	using	the	keys()	method	to	obtain	a	view	object	containing	the	keys	of	the	dictionary.	This	allows	us	to	perform	various	operations	on	the
keys	of	a	dictionary.	Looping	Through	Dictionary	Values	When	working	with	dictionaries	in	Python,	you	often	need	to	iterate	or	loop	through	the	values	stored	in	the	dictionary.	This	allows	you	to	access	and	manipulate	each	individual	value	in	the	dictionary.	There	are	several	ways	to	loop	through	dictionary	values	in	Python.	Let's	explore	some	of	the
most	common	methods.	Method	1:	Using	the	values()	method	The	easiest	way	to	loop	through	dictionary	values	is	by	using	the	values()	method.	This	method	returns	a	view	object	that	contains	all	the	values	in	the	dictionary.	Here's	an	example	that	demonstrates	how	to	use	the	values()	method	to	loop	through	dictionary	values:	fruits	=	{'apple':	'red',
'banana':	'yellow',	'orange':	'orange'}	for	color	in	fruits.values():	print(color)	Output:	red	yellow	orange	In	this	example,	the	values()	method	returns	a	view	object	that	contains	the	values	'red',	'yellow',	and	'orange'.	The	for	loop	then	iterates	over	each	value	and	prints	it.	Method	2:	Using	the	items()	method	Another	way	to	loop	through	dictionary
values	is	by	using	the	items()	method.	This	method	returns	a	view	object	that	contains	all	the	key-value	pairs	in	the	dictionary	as	tuples.	Here's	an	example	that	demonstrates	how	to	use	the	items()	method	to	loop	through	dictionary	values:	fruits	=	{'apple':	'red',	'banana':	'yellow',	'orange':	'orange'}	for	fruit,	color	in	fruits.items():	print(color)	Output:
red	yellow	orange	In	this	example,	the	items()	method	returns	a	view	object	that	contains	the	key-value	pairs	('apple',	'red'),	('banana',	'yellow'),	and	('orange',	'orange').	The	for	loop	then	iterates	over	each	key-value	pair,	but	only	the	value	is	printed.	Method	3:	Using	a	list	comprehension	If	you	prefer	a	more	concise	syntax,	you	can	use	a	list
comprehension	to	loop	through	dictionary	values	and	store	them	in	a	list.	Here's	an	example	that	demonstrates	how	to	use	a	list	comprehension	to	loop	through	dictionary	values:	fruits	=	{'apple':	'red',	'banana':	'yellow',	'orange':	'orange'}	values	=	[color	for	color	in	fruits.values()]	print(values)	Output:	['red',	'yellow',	'orange']	In	this	example,	the	list
comprehension	loops	through	each	value	in	the	dictionary	and	adds	it	to	a	new	list	called	values.	These	are	just	a	few	examples	of	how	you	can	loop	through	dictionary	values	in	Python.	Depending	on	your	specific	use	case,	you	may	find	one	method	more	suitable	than	the	others.	Experiment	with	these	techniques	to	find	the	one	that	best	fits	your
needs.	Now	that	you	know	how	to	loop	through	dictionary	values,	you	can	easily	access	and	manipulate	them	in	your	Python	programs.	Related	Article:	How	to	Use	Redis	with	Django	ApplicationsLooping	Through	Dictionary	Items	Iterating	over	a	Python	dictionary	allows	you	to	access	each	key-value	pair	in	the	dictionary	and	perform	operations	on
them.	In	this	section,	we	will	explore	different	ways	to	loop	through	dictionary	items.	Using	a	for	loop	One	common	way	to	loop	through	dictionary	items	is	by	using	a	for	loop.	When	using	a	for	loop	with	a	dictionary,	it	iterates	over	the	dictionary	keys	by	default.	Here's	an	example:	fruits	=	{"apple":	"red",	"banana":	"yellow",	"orange":	"orange"}	for
fruit	in	fruits:	print(fruit)	#	prints	the	keys	Output:	apple	banana	orange	To	access	the	corresponding	values,	you	can	use	the	keys	to	index	the	dictionary:	for	fruit	in	fruits:	print(fruits[fruit])	#	prints	the	values	Output:	red	yellow	orange	If	you	want	to	loop	through	both	the	keys	and	values	simultaneously,	you	can	use	the	items()	method	of	the
dictionary:	for	fruit,	color	in	fruits.items():	print(fruit,	"is",	color)	Output:	apple	is	red	banana	is	yellow	orange	is	orange	Using	a	while	loop	Another	way	to	loop	through	dictionary	items	is	by	using	a	while	loop.	You	can	iterate	over	the	keys	of	the	dictionary	and	access	the	corresponding	values	inside	the	loop.	Here's	an	example:	fruits	=	{"apple":
"red",	"banana":	"yellow",	"orange":	"orange"}	keys	=	list(fruits.keys())	#	convert	dictionary	keys	to	a	list	i	=	0	while	i	<	len(keys):	fruit	=	keys[i]	print(fruit,	"is",	fruits[fruit])	i	+=	1	Output:	apple	is	red	banana	is	yellow	orange	is	orange	Using	comprehension	Python	also	provides	comprehension	syntax	to	loop	through	dictionary	items	and	create	a
new	dictionary	or	perform	some	operations.	Here's	an	example	of	using	a	dictionary	comprehension	to	create	a	new	dictionary	with	modified	values:	fruits	=	{"apple":	"red",	"banana":	"yellow",	"orange":	"orange"}	modified_fruits	=	{fruit:	color.upper()	for	fruit,	color	in	fruits.items()}	print(modified_fruits)	Output:	{'apple':	'RED',	'banana':	'YELLOW',
'orange':	'ORANGE'}	In	this	example,	we	loop	through	the	key-value	pairs	of	the	fruits	dictionary	using	a	dictionary	comprehension	and	create	a	new	dictionary	modified_fruits	with	the	same	keys	but	uppercase	values.	Related	Article:	How	To	Convert	a	Python	Dict	To	a	DataframeNested	Dictionaries:	A	Closer	Look	What	happens	when	you	need	to
store	more	complex	data	structures	within	a	dictionary?	That's	where	nested	dictionaries	come	in.	A	nested	dictionary	is	a	dictionary	that	contains	other	dictionaries	as	its	values.	This	allows	you	to	create	a	hierarchical	structure,	similar	to	a	tree,	where	each	level	represents	a	different	category	or	subcategory	of	data.	Let's	take	a	closer	look	at	how	to
work	with	nested	dictionaries	in	Python.	Creating	a	Nested	Dictionary	To	create	a	nested	dictionary,	you	simply	assign	a	dictionary	as	the	value	to	a	key	within	another	dictionary.	Here's	an	example:	person	=	{	"name":	"John	Doe",	"age":	30,	"address":	{	"street":	"123	Main	St",	"city":	"New	York",	"state":	"NY"	}	}	In	this	example,	the	person
dictionary	contains	a	nested	dictionary	under	the	key	"address".	The	nested	dictionary	stores	the	person's	street,	city,	and	state.	Accessing	Values	in	a	Nested	Dictionary	Accessing	values	in	a	nested	dictionary	follows	a	similar	syntax	to	accessing	values	in	a	regular	dictionary.	You	use	square	brackets	to	specify	the	key	or	keys	needed	to	access	the
desired	value.	Here's	an	example:	print(person["address"]["city"])	#	Output:	New	York	In	this	example,	we	access	the	value	of	the	"city"	key	within	the	nested	"address"	dictionary	using	the	square	bracket	notation.	Looping	Through	a	Nested	Dictionary	Iterating	over	a	nested	dictionary	requires	nested	loops.	You	can	use	a	combination	of	for	loops
and	dictionary	methods	to	loop	through	the	keys	and	values	at	each	level.	Here's	an	example:	for	key1,	value1	in	person.items():	if	isinstance(value1,	dict):	for	key2,	value2	in	value1.items():	print(key2,	":",	value2)	else:	print(key1,	":",	value1)	In	this	example,	we	use	the	items()	method	to	iterate	over	the	key-value	pairs	in	the	person	dictionary.	If	a
value	is	itself	a	dictionary	(checked	using	isinstance()),	we	iterate	over	its	key-value	pairs	as	well.	This	allows	us	to	print	all	the	keys	and	values	within	the	nested	dictionary.	Related	Article:	Converting	cURL	Commands	to	PythonModifying	Values	in	a	Nested	Dictionary	To	modify	a	value	in	a	nested	dictionary,	you	can	use	the	same	square	bracket
notation	as	when	accessing	the	value.	Here's	an	example:	person["address"]["city"]	=	"San	Francisco"	In	this	example,	we	modify	the	value	of	the	"city"	key	within	the	nested	"address"	dictionary	to	"San	Francisco".	Common	Use	Cases:	Filtering	and	Transforming	Dictionary	Data	Filtering	and	transforming	dictionary	data	is	a	common	task	when
working	with	Python	dictionaries.	In	this	chapter,	we	will	explore	some	common	use	cases	and	techniques	for	filtering	and	transforming	dictionary	data.	Filtering	Dictionary	Data	Filtering	dictionary	data	involves	selecting	specific	key-value	pairs	based	on	certain	criteria.	There	are	multiple	ways	to	achieve	this,	depending	on	the	requirements	of	your
task.	One	common	approach	is	to	use	a	dictionary	comprehension.	This	allows	you	to	create	a	new	dictionary	by	iterating	over	the	original	dictionary	and	applying	a	condition	to	filter	the	data.	#	Filtering	dictionary	data	using	dictionary	comprehension	original_dict	=	{'apple':	2,	'banana':	3,	'orange':	4,	'grape':	1}	filtered_dict	=	{key:	value	for	key,
value	in	original_dict.items()	if	value	>	2}	print(filtered_dict)	#	Output:	{'banana':	3,	'orange':	4}	In	the	above	example,	we	filter	the	original	dictionary	by	only	including	key-value	pairs	where	the	value	is	greater	than	2.	Another	approach	is	to	use	the	filter()	function	along	with	a	lambda	function.	This	function	allows	you	to	apply	a	condition	to	filter
the	dictionary	data.	#	Filtering	dictionary	data	using	the	filter()	function	original_dict	=	{'apple':	2,	'banana':	3,	'orange':	4,	'grape':	1}	filtered_dict	=	dict(filter(lambda	item:	item[1]	>	2,	original_dict.items()))	print(filtered_dict)	#	Output:	{'banana':	3,	'orange':	4}	In	this	example,	we	use	the	filter()	function	to	create	an	iterator	that	filters	the
dictionary	items	based	on	the	condition	provided	by	the	lambda	function.	We	then	convert	the	filtered	items	back	into	a	dictionary	using	the	dict()	function.	Transforming	Dictionary	Data	Transforming	dictionary	data	involves	modifying	the	values	of	the	dictionary	based	on	certain	rules	or	operations.	Let's	explore	a	couple	of	common	techniques	for
transforming	dictionary	data.	One	common	approach	is	to	use	a	dictionary	comprehension	with	an	expression	that	transforms	the	values	of	the	dictionary.	#	Transforming	dictionary	data	using	dictionary	comprehension	original_dict	=	{'apple':	2,	'banana':	3,	'orange':	4,	'grape':	1}	transformed_dict	=	{key:	value	*	2	for	key,	value	in
original_dict.items()}	print(transformed_dict)	#	Output:	{'apple':	4,	'banana':	6,	'orange':	8,	'grape':	2}	In	this	example,	we	multiply	each	value	in	the	original	dictionary	by	2	using	a	dictionary	comprehension.	Another	technique	is	to	use	the	map()	function	along	with	a	lambda	function	to	apply	a	transformation	to	each	value	in	the	dictionary.	#
Transforming	dictionary	data	using	the	map()	function	original_dict	=	{'apple':	2,	'banana':	3,	'orange':	4,	'grape':	1}	transformed_dict	=	{key:	value	for	key,	value	in	map(lambda	item:	(item[0],	item[1]	*	2),	original_dict.items())}	print(transformed_dict)	#	Output:	{'apple':	4,	'banana':	6,	'orange':	8,	'grape':	2}	In	this	example,	we	use	the	map()
function	to	apply	the	lambda	function	to	each	item	in	the	dictionary,	which	multiplies	the	value	by	2.	We	then	convert	the	transformed	items	back	into	a	dictionary	using	a	dictionary	comprehension.	Advanced	Techniques:	Merging	and	Updating	Dictionaries	One	of	the	most	useful	features	of	dictionaries	is	the	ability	to	merge	or	update	them,	which
can	be	essential	when	working	with	large	datasets	or	when	combining	information	from	multiple	sources.	In	this	chapter,	we	will	explore	advanced	techniques	for	merging	and	updating	dictionaries	in	Python.	We	will	cover	different	methods	and	approaches	to	accomplish	this	task	efficiently.	Merging	Dictionaries	Merging	dictionaries	involves
combining	the	key-value	pairs	of	multiple	dictionaries	into	a	single	dictionary.	Python	provides	several	methods	to	achieve	this,	and	we	will	discuss	two	of	the	most	common	approaches.	Method	1:	Using	the	update()	method	The	update()	method	allows	you	to	merge	two	or	more	dictionaries	into	one.	It	takes	another	dictionary	as	an	argument	and
adds	its	key-value	pairs	to	the	original	dictionary.	If	there	are	any	common	keys	between	the	dictionaries,	the	values	from	the	argument	dictionary	will	overwrite	the	values	from	the	original	dictionary.	Here's	an	example	that	demonstrates	the	usage	of	the	update()	method:	dict1	=	{'a':	1,	'b':	2}	dict2	=	{'c':	3,	'd':	4}	dict1.update(dict2)	print(dict1)	#
Output:	{'a':	1,	'b':	2,	'c':	3,	'd':	4}	In	this	example,	the	update()	method	merges	dict2	into	dict1,	resulting	in	a	new	dictionary	with	all	the	key-value	pairs	from	both	dictionaries.	Method	2:	Using	the	double	asterisk	operator	(**)	Another	way	to	merge	dictionaries	is	by	using	the	double	asterisk	operator	(**).	This	operator	can	be	used	to	unpack	a
dictionary	into	another	dictionary,	effectively	merging	them	together.	Here's	an	example	that	demonstrates	the	usage	of	the	double	asterisk	operator:	dict1	=	{'a':	1,	'b':	2}	dict2	=	{'c':	3,	'd':	4}	merged_dict	=	{**dict1,	**dict2}	print(merged_dict)	#	Output:	{'a':	1,	'b':	2,	'c':	3,	'd':	4}	In	this	example,	the	double	asterisk	operator	unpacks	both
dictionaries	(dict1	and	dict2)	into	a	new	dictionary,	resulting	in	a	merged	dictionary	with	all	the	key-value	pairs.	Updating	Dictionaries	Updating	dictionaries	involves	modifying	the	values	of	existing	keys	in	a	dictionary.	Python	provides	different	methods	to	update	dictionaries,	and	we	will	discuss	two	common	approaches.	Method	1:	Using	the
update()	method	The	update()	method	can	also	be	used	to	update	the	values	of	existing	keys	in	a	dictionary.	When	a	key	is	present	in	both	dictionaries,	the	update()	method	will	replace	the	old	value	with	the	new	value.	Here's	an	example	that	demonstrates	updating	a	dictionary	using	the	update()	method:	dict1	=	{'a':	1,	'b':	2}	dict2	=	{'b':	3,	'c':	4}
dict1.update(dict2)	print(dict1)	#	Output:	{'a':	1,	'b':	3,	'c':	4}	In	this	example,	the	update()	method	updates	the	value	of	the	key	'b'	from	2	to	3.	Method	2:	Using	the	square	bracket	notation	Another	way	to	update	a	dictionary	is	by	using	the	square	bracket	notation.	This	method	allows	you	to	directly	assign	a	new	value	to	a	specific	key	in	the
dictionary.	Here's	an	example	that	demonstrates	updating	a	dictionary	using	the	square	bracket	notation:	dict1	=	{'a':	1,	'b':	2}	dict1['b']	=	3	print(dict1)	#	Output:	{'a':	1,	'b':	3}	In	this	example,	the	value	of	the	key	'b'	is	updated	from	2	to	3	using	the	square	bracket	notation.	Real	World	Examples:	Analyzing	Data	and	Creating	Reports	In	this	chapter,
we	will	explore	real-world	examples	of	how	to	iterate	and	loop	through	Python	dictionaries	to	analyze	data	and	create	reports.	Dictionaries	are	a	powerful	data	structure	in	Python	that	allow	us	to	store	and	retrieve	data	using	key-value	pairs.	Related	Article:	How	To	Sort	A	Dictionary	By	Value	In	PythonAnalyzing	Data	One	common	use	case	for
iterating	through	dictionaries	is	to	analyze	data.	Let's	say	we	have	a	dictionary	that	represents	the	sales	of	various	products:	sales	=	{	'apple':	10,	'banana':	5,	'orange':	7,	'grape':	3	}	We	can	iterate	through	the	dictionary	to	calculate	the	total	number	of	sales:	total_sales	=	0	for	product,	quantity	in	sales.items():	total_sales	+=	quantity	print(f'Total
sales:	{total_sales}')	This	will	output:	Total	sales:	25	We	can	also	find	the	product	with	the	highest	sales:	max_sales	=	0	best_selling_product	=	''	for	product,	quantity	in	sales.items():	if	quantity	>	max_sales:	max_sales	=	quantity	best_selling_product	=	product	print(f'Best	selling	product:	{best_selling_product}')	This	will	output:	Best	selling	product:
apple	Creating	Reports	Another	common	use	case	for	iterating	through	dictionaries	is	to	create	reports.	Let's	say	we	have	a	dictionary	that	represents	the	sales	of	various	products	in	different	regions:	sales	=	{	'apple':	{	'north':	5,	'south':	3,	'east':	2,	'west':	4	},	'banana':	{	'north':	2,	'south':	1,	'east':	3,	'west':	3	},	'orange':	{	'north':	3,	'south':	2,	'east':
4,	'west':	1	}	}	We	can	iterate	through	the	dictionary	to	create	a	report	that	shows	the	sales	of	each	product	in	each	region:	for	product,	region_data	in	sales.items():	print(f'Sales	of	{product}:')	for	region,	quantity	in	region_data.items():	print(f'-	{region.capitalize()}:	{quantity}')	print()	This	will	output:	Sales	of	apple:	-	North:	5	-	South:	3	-	East:	2	-
West:	4	Sales	of	banana:	-	North:	2	-	South:	1	-	East:	3	-	West:	3	Sales	of	orange:	-	North:	3	-	South:	2	-	East:	4	-	West:	1	This	report	provides	a	clear	overview	of	the	sales	of	each	product	in	each	region.	Handling	Missing	Keys:	Using	Default	Values	and	the	'get'	Method	When	working	with	Python	dictionaries,	it's	common	to	encounter	situations	where
a	key	may	be	missing.	In	these	cases,	it's	important	to	handle	the	missing	keys	gracefully	to	avoid	errors	in	your	code.	Python	provides	two	convenient	methods	for	handling	missing	keys:	using	default	values	and	the	'get'	method.	Using	Default	Values	One	way	to	handle	missing	keys	in	a	dictionary	is	to	provide	a	default	value	that	will	be	returned	if
the	key	is	not	found.	This	can	be	achieved	by	using	the	square	bracket	notation	with	the	'get'	method.	#	Create	a	dictionary	my_dict	=	{'apple':	1,	'banana':	2,	'orange':	3}	#	Access	a	key	with	a	default	value	value	=	my_dict.get('pear',	0)	print(value)	#	Output:	0	In	the	example	above,	the	'get'	method	is	used	to	access	the	key	'pear'	with	a	default
value	of	0.	Since	'pear'	is	not	present	in	the	dictionary,	the	default	value	of	0	is	returned.	You	can	also	provide	a	default	value	when	accessing	a	key	directly	using	the	square	bracket	notation:	#	Create	a	dictionary	my_dict	=	{'apple':	1,	'banana':	2,	'orange':	3}	#	Access	a	key	with	a	default	value	value	=	my_dict['pear']	if	'pear'	in	my_dict	else	0
print(value)	#	Output:	0	This	approach	checks	if	the	key	'pear'	exists	in	the	dictionary	before	accessing	it.	If	the	key	is	not	found,	the	default	value	of	0	is	returned.	Related	Article:	How	to	Fix	Indentation	Errors	in	PythonThe	'get'	Method	The	'get'	method	is	a	powerful	tool	for	handling	missing	keys	in	dictionaries.	It	allows	you	to	provide	a	default
value	that	will	be	returned	if	the	key	is	not	found,	without	raising	a	KeyError.	#	Create	a	dictionary	my_dict	=	{'apple':	1,	'banana':	2,	'orange':	3}	#	Access	a	key	using	the	'get'	method	value	=	my_dict.get('apple')	print(value)	#	Output:	1	#	Access	a	missing	key	using	the	'get'	method	value	=	my_dict.get('pear')	print(value)	#	Output:	None	In	the
example	above,	the	'get'	method	is	used	to	access	the	keys	'apple'	and	'pear'.	Since	'apple'	is	present	in	the	dictionary,	its	corresponding	value	of	1	is	returned.	However,	'pear'	is	not	present	in	the	dictionary,	so	the	'get'	method	returns	None	by	default.	You	can	also	provide	a	default	value	to	the	'get'	method:	#	Create	a	dictionary	my_dict	=	{'apple':
1,	'banana':	2,	'orange':	3}	#	Access	a	missing	key	using	the	'get'	method	with	a	default	value	value	=	my_dict.get('pear',	0)	print(value)	#	Output:	0	In	this	example,	the	'get'	method	is	used	to	access	the	key	'pear'	with	a	default	value	of	0.	Since	'pear'	is	not	present	in	the	dictionary,	the	default	value	of	0	is	returned.	Using	default	values	and	the	'get'
method	allows	you	to	handle	missing	keys	in	a	flexible	and	robust	way.	This	can	be	especially	useful	when	working	with	large	dictionaries	or	when	dealing	with	user	input.	Checking	for	Key	Existence:	'in'	Operator	vs	'dict.get'	When	working	with	Python	dictionaries,	it	is	common	to	check	if	a	specific	key	exists	before	trying	to	access	its	value.	There
are	multiple	ways	to	accomplish	this,	but	two	popular	methods	are	using	the	'in'	operator	and	the	'dict.get'	method.	The	'in'	Operator	The	'in'	operator	is	a	simple	and	straightforward	way	to	check	if	a	key	exists	in	a	dictionary.	It	returns	a	boolean	value,	True	if	the	key	is	present,	and	False	otherwise.	Here's	an	example:	my_dict	=	{'name':	'John',	'age':
25,	'city':	'New	York'}	if	'name'	in	my_dict:	print('The	key	"name"	exists	in	the	dictionary.')	else:	print('The	key	"name"	does	not	exist	in	the	dictionary.')	In	this	example,	we	check	if	the	key	'name'	exists	in	the	dictionary	'my_dict'.	If	it	does,	we	print	a	message	confirming	its	existence;	otherwise,	we	print	a	different	message.	The	'in'	operator	is	concise
and	easy	to	understand,	making	it	a	popular	choice	for	checking	key	existence	in	Python	dictionaries.	The	'dict.get'	Method	The	'dict.get'	method	is	another	way	to	check	for	key	existence	in	a	dictionary.	It	returns	the	value	associated	with	the	specified	key	if	it	exists,	and	a	default	value	if	the	key	is	not	found.	Here's	an	example:	my_dict	=	{'name':
'John',	'age':	25,	'city':	'New	York'}	name	=	my_dict.get('name',	'Default	Name')	print(f'The	value	associated	with	the	key	"name"	is:	{name}')	address	=	my_dict.get('address',	'Default	Address')	print(f'The	value	associated	with	the	key	"address"	is:	{address}')	In	this	example,	we	use	the	'dict.get'	method	to	retrieve	the	value	associated	with	the	key
'name'.	If	the	key	exists,	the	method	returns	the	corresponding	value;	otherwise,	it	returns	the	default	value	'Default	Name'.	We	also	demonstrate	using	the	'dict.get'	method	for	a	key	that	does	not	exist,	returning	the	default	value	'Default	Address'.	The	'dict.get'	method	provides	a	flexible	way	to	handle	key	existence	in	a	dictionary	by	allowing	us	to
specify	a	default	value	to	be	returned	when	the	key	is	not	found.	Related	Article:	How	to	Use	Python's	Numpy.Linalg.Norm	FunctionChoosing	Between	'in'	Operator	and	'dict.get'	Both	the	'in'	operator	and	the	'dict.get'	method	have	their	advantages	and	use	cases.	Here	are	some	considerations	to	help	you	choose	the	appropriate	method:	-	Use	the	'in'
operator	when	you	simply	need	to	check	if	a	key	exists	in	a	dictionary	and	do	not	require	the	associated	value.	-	Use	the	'dict.get'	method	when	you	need	to	access	the	value	associated	with	a	key,	and	also	want	to	specify	a	default	value	to	be	returned	if	the	key	is	not	found.	By	understanding	the	differences	between	the	'in'	operator	and	'dict.get'
method,	you	can	effectively	check	for	key	existence	in	Python	dictionaries	and	handle	different	scenarios	accordingly.	When	working	with	large	dictionaries	in	Python,	it	is	important	to	consider	the	performance	implications.	As	the	size	of	a	dictionary	increases,	the	time	taken	to	iterate	and	loop	through	it	also	increases.	Therefore,	it	is	crucial	to
optimize	the	code	to	ensure	efficient	execution.	Here	are	some	performance	considerations	to	keep	in	mind	when	working	with	large	dictionaries:	1.	Limit	the	Size	of	the	Dictionary	One	way	to	improve	performance	is	to	limit	the	size	of	the	dictionary	as	much	as	possible.	If	you	only	need	a	subset	of	the	data,	consider	filtering	or	reducing	the
dictionary	size	before	iterating	through	it.	This	can	be	done	using	techniques	such	as	dictionary	comprehension	or	filtering	functions	like	filter().	For	example,	let's	say	we	have	a	large	dictionary	data	and	we	only	need	to	iterate	through	the	items	with	values	greater	than	100:	data	=	{'a':	50,	'b':	150,	'c':	200,	'd':	75}	filtered_data	=	{key:	value	for	key,
value	in	data.items()	if	value	>	100}	for	key,	value	in	filtered_data.items():	print(key,	value)	This	approach	reduces	the	size	of	the	dictionary	and	improves	performance	by	only	iterating	through	the	relevant	items.	2.	Use	Dictionary	Views	Python	provides	dictionary	views,	which	are	dynamic	views	of	the	dictionary's	keys,	values,	or	items.	Views
provide	a	way	to	iterate	over	the	dictionary	without	creating	a	separate	list	or	tuple,	thereby	reducing	memory	usage	and	improving	performance.	There	are	three	types	of	dictionary	views	available:	-	keys()	view:	This	returns	a	view	of	the	dictionary's	keys.	-	values()	view:	This	returns	a	view	of	the	dictionary's	values.	-	items()	view:	This	returns	a	view
of	the	dictionary's	key-value	pairs.	Here's	an	example	of	using	the	items()	view	to	iterate	through	a	large	dictionary:	data	=	{'a':	1,	'b':	2,	'c':	3,	'd':	4}	for	key,	value	in	data.items():	print(key,	value)	Using	dictionary	views	instead	of	creating	separate	lists	or	tuples	can	significantly	improve	performance	when	working	with	large	dictionaries.	Related
Article:	How	to	Access	Python	Data	Structures	with	Square	Brackets3.	Avoid	Unnecessary	Dictionary	Operations	Performing	unnecessary	dictionary	operations	can	impact	performance.	Whenever	possible,	avoid	unnecessary	operations	such	as	dictionary	updates,	deletions,	or	lookups	within	loops.	For	example,	consider	the	following	code:	data	=
{'a':	1,	'b':	2,	'c':	3,	'd':	4}	for	key,	value	in	data.items():	if	key	in	data:	print(key,	value)	In	this	case,	the	key	in	data	lookup	is	unnecessary	since	we	are	already	iterating	through	the	dictionary	using	data.items().	Removing	the	unnecessary	lookup	can	improve	performance.	4.	Use	the	get()	Method	for	Dictionary	Lookups	When	performing	dictionary
lookups,	using	the	get()	method	instead	of	direct	indexing	can	be	more	efficient,	especially	when	dealing	with	large	dictionaries.	The	get()	method	allows	you	to	provide	a	default	value	if	the	key	is	not	found,	avoiding	the	need	to	handle	key	errors.	Here's	an	example:	data	=	{'a':	1,	'b':	2,	'c':	3,	'd':	4}	value	=	data.get('e',	0)	print(value)	#	Output:	0
Using	the	get()	method	with	a	default	value	can	improve	performance	and	simplify	the	code	when	dealing	with	large	dictionaries.	In	some	cases,	using	alternative	data	structures	may	be	more	suitable	than	dictionaries,	depending	on	the	specific	requirements	of	your	program.	For	example,	if	you	need	to	perform	frequent	lookups	or	maintain	a	specific
order,	you	might	consider	using	a	different	data	structure	such	as	a	list,	set,	or	OrderedDict.	Carefully	evaluating	the	requirements	of	your	program	and	choosing	the	appropriate	data	structure	can	greatly	improve	performance.	Optimizing	the	performance	of	dictionary	operations	is	crucial	when	working	with	large	dictionaries	in	Python.	By	limiting
the	size	of	the	dictionary,	using	dictionary	views,	avoiding	unnecessary	operations,	using	the	get()	method,	and	considering	alternative	data	structures,	you	can	ensure	efficient	execution	and	improve	the	performance	of	your	code.	Working	with	Dictionary	Views:	'keys',	'values',	and	'items'	Dictionary	views	in	Python	provide	a	dynamic	view	into	the
keys,	values,	or	key-value	pairs	of	a	dictionary.	They	allow	you	to	access	and	manipulate	the	dictionary	contents	without	creating	a	new	list	or	tuple.	In	this	section,	we	will	explore	the	three	different	dictionary	views	available	in	Python:	'keys',	'values',	and	'items'.	Related	Article:	Database	Query	Optimization	in	Django:	Boosting	Performance	for	Your
Web	AppsThe	'keys'	View	The	'keys'	view	provides	a	dynamic	view	of	the	keys	present	in	a	dictionary.	It	allows	you	to	iterate	over	the	keys	or	perform	set	operations	like	intersection,	union,	and	difference.	Here's	an	example	of	how	to	use	the	'keys'	view:	fruits	=	{'apple':	'red',	'banana':	'yellow',	'orange':	'orange'}	#	Iterate	over	the	keys	for	key	in
fruits.keys():	print(key)	#	Check	if	a	key	exists	if	'apple'	in	fruits.keys():	print('Apple	is	present	in	the	dictionary')	The	'values'	View	The	'values'	view	provides	a	dynamic	view	of	the	values	present	in	a	dictionary.	It	allows	you	to	iterate	over	the	values	or	perform	set	operations	like	intersection,	union,	and	difference.	Here's	an	example	of	how	to	use	the
'values'	view:	fruits	=	{'apple':	'red',	'banana':	'yellow',	'orange':	'orange'}	#	Iterate	over	the	values	for	value	in	fruits.values():	print(value)	#	Check	if	a	value	exists	if	'red'	in	fruits.values():	print('A	fruit	with	red	color	is	present	in	the	dictionary')	The	'items'	View	The	'items'	view	provides	a	dynamic	view	of	the	key-value	pairs	present	in	a	dictionary.	It
allows	you	to	iterate	over	the	key-value	pairs	or	perform	set	operations	like	intersection,	union,	and	difference.	Here's	an	example	of	how	to	use	the	'items'	view:	fruits	=	{'apple':	'red',	'banana':	'yellow',	'orange':	'orange'}	#	Iterate	over	the	key-value	pairs	for	key,	value	in	fruits.items():	print(key,	value)	#	Check	if	a	key-value	pair	exists	if	('apple',
'red')	in	fruits.items():	print('An	apple	with	red	color	is	present	in	the	dictionary')	Using	Dictionary	Comprehensions	Python	provides	a	concise	and	powerful	way	to	create	dictionaries	using	dictionary	comprehensions.	Similar	to	list	comprehensions,	dictionary	comprehensions	allow	you	to	create	dictionaries	in	a	single	line	of	code,	making	your	code
more	readable	and	efficient.	The	basic	structure	of	a	dictionary	comprehension	is:	{key_expression:	value_expression	for	item	in	iterable}	Here,	the	key_expression	is	evaluated	for	each	item	in	the	iterable,	and	the	result	is	used	as	the	key	in	the	dictionary.	Similarly,	the	value_expression	is	evaluated	for	each	item	and	used	as	the	corresponding	value
in	the	dictionary.	Let's	say	we	have	a	list	of	numbers	and	we	want	to	create	a	dictionary	where	each	number	is	the	key	and	its	square	is	the	value:	numbers	=	[1,	2,	3,	4,	5]	squared_dict	=	{num:	num**2	for	num	in	numbers}	print(squared_dict)	Output:	{1:	1,	2:	4,	3:	9,	4:	16,	5:	25}	In	this	example,	the	key	expression	num	is	each	number	in	the	list
numbers,	and	the	value	expression	num**2	calculates	the	square	of	each	number.	You	can	also	add	conditions	to	filter	items	in	the	iterable.	For	example,	let's	create	a	dictionary	where	the	keys	are	the	even	numbers	from	1	to	10	and	the	values	are	their	squares:	even_dict	=	{num:	num**2	for	num	in	range(1,	11)	if	num	%	2	==	0}	print(even_dict)
Output:	{2:	4,	4:	16,	6:	36,	8:	64,	10:	100}	In	this	case,	the	condition	num	%	2	==	0	filters	out	odd	numbers,	and	only	even	numbers	are	used	as	keys	in	the	dictionary.	You	can	also	use	dictionary	comprehensions	to	transform	an	existing	dictionary.	Let's	say	we	have	a	dictionary	where	the	keys	are	names	and	the	values	are	ages,	and	we	want	to
create	a	new	dictionary	where	the	keys	are	ages	and	the	values	are	lists	of	names:	people	=	{'Alice':	25,	'Bob':	30,	'Charlie':	35}	age_dict	=	{age:	[name	for	name,	age	in	people.items()	if	age	==	age]	for	name,	age	in	people.items()}	print(age_dict)	Output:	{25:	['Alice'],	30:	['Bob'],	35:	['Charlie']}	In	this	example,	we	iterate	over	the	items	in	the
people	dictionary,	and	for	each	name	and	age	pair,	we	check	if	the	age	matches	the	current	key.	If	it	does,	we	add	the	name	to	the	corresponding	list	in	the	new	dictionary.	Dictionary	comprehensions	are	a	powerful	tool	in	Python	for	quickly	creating	dictionaries	based	on	existing	data	or	transforming	data	into	a	different	structure.	They	can	make
your	code	more	concise	and	easier	to	read,	especially	when	dealing	with	complex	data	transformations.	To	learn	more	about	dictionary	comprehensions,	you	can	refer	to	the	official	Python	documentation	on	dictionaries.	Related	Article:	How	To	Read	JSON	From	a	File	In	PythonCustomizing	Iteration	Order	with	'collections.OrderedDict'	Python
dictionaries	are	unordered	collections	of	key-value	pairs.	This	means	that	when	you	iterate	through	a	dictionary,	you	cannot	guarantee	the	order	in	which	the	items	will	be	returned.	However,	there	may	be	situations	where	you	need	to	iterate	through	a	dictionary	in	a	specific	order.	To	address	this	issue,	Python	provides	the	collections.OrderedDict
class,	which	is	a	subclass	of	the	built-in	dict	class.	OrderedDict	maintains	the	order	of	items	as	they	are	added	and	allows	you	to	customize	the	iteration	order.	To	use	OrderedDict,	you	need	to	import	it	from	the	collections	module:	from	collections	import	OrderedDict	You	can	create	an	empty	OrderedDict	using	the	following	syntax:	ordered_dict	=
OrderedDict()	To	add	items	to	the	OrderedDict,	you	can	use	the	same	syntax	as	a	regular	dictionary:	ordered_dict['key1']	=	'value1'	ordered_dict['key2']	=	'value2'	ordered_dict['key3']	=	'value3'	When	you	iterate	through	an	OrderedDict,	the	items	will	be	returned	in	the	order	they	were	added:	for	key,	value	in	ordered_dict.items():	print(key,	value)
Output:	key1	value1	key2	value2	key3	value3	You	can	also	customize	the	iteration	order	of	an	OrderedDict	using	the	move_to_end()	method.	This	method	moves	an	existing	key	to	either	end	of	the	dictionary,	effectively	changing	its	position	in	the	iteration	order.	The	default	position	is	the	end	of	the	dictionary.	Here's	an	example:	ordered_dict	=
OrderedDict([('key1',	'value1'),	('key2',	'value2'),	('key3',	'value3')])	#	Move	'key2'	to	the	end	ordered_dict.move_to_end('key2')	for	key,	value	in	ordered_dict.items():	print(key,	value)	Output:	key1	value1	key3	value3	key2	value2	In	the	example	above,	the	key-value	pair	('key2',	'value2')	is	moved	to	the	end	of	the	OrderedDict,	changing	the	iteration
order.	Using	collections.OrderedDict	allows	you	to	have	control	over	the	iteration	order	of	dictionary	items.	This	can	be	useful	in	scenarios	where	the	order	of	items	matters,	such	as	when	you	need	to	process	data	in	a	specific	sequence.	For	more	information	on	collections.OrderedDict,	you	can	refer	to	the	official	Python	documentation.	Iterating
Through	Multiple	Dictionaries	Simultaneously	In	Python,	it	is	common	to	work	with	multiple	dictionaries	simultaneously,	especially	when	dealing	with	related	data	or	performing	operations	that	require	information	from	multiple	sources.	This	chapter	will	guide	you	through	different	methods	to	iterate	through	multiple	dictionaries	at	once.	Method	1:
Using	the	zip()	function	The	zip()	function	allows	you	to	combine	multiple	iterables,	such	as	dictionaries,	into	a	single	iterable.	By	using	this	function,	you	can	iterate	through	the	dictionaries	simultaneously.	Here's	an	example	to	illustrate	this:	dict1	=	{'name':	'John',	'age':	30,	'country':	'USA'}	dict2	=	{'name':	'Jane',	'age':	25,	'country':	'Canada'}	for
key1,	key2	in	zip(dict1,	dict2):	print(key1,	dict1[key1],	key2,	dict2[key2])	Output:	name	John	name	Jane	age	30	age	25	country	USA	country	Canada	In	the	above	code	snippet,	we	iterate	through	the	keys	of	both	dictionaries	using	the	zip()	function.	We	then	print	the	key-value	pairs	for	each	corresponding	key.	Method	2:	Using	the	items()	method	The
items()	method	returns	a	view	object	that	contains	the	key-value	pairs	of	a	dictionary.	By	using	this	method	on	multiple	dictionaries,	you	can	iterate	through	their	key-value	pairs	simultaneously.	Here's	an	example:	dict1	=	{'name':	'John',	'age':	30,	'country':	'USA'}	dict2	=	{'name':	'Jane',	'age':	25,	'country':	'Canada'}	for	(key1,	value1),	(key2,	value2)
in	zip(dict1.items(),	dict2.items()):	print(key1,	value1,	key2,	value2)	Output:	name	John	name	Jane	age	30	age	25	country	USA	country	Canada	In	the	above	code	snippet,	we	use	the	items()	method	on	both	dictionaries	to	get	their	key-value	pairs.	We	then	iterate	through	these	pairs	using	the	zip()	function	and	print	them	accordingly.	Method	3:	Using
the	zip_longest()	function	The	zip_longest()	function	from	the	itertools	module	is	useful	when	you	have	dictionaries	with	different	lengths.	It	fills	in	missing	values	with	a	specified	fill	value,	allowing	you	to	iterate	through	them	simultaneously.	Here's	an	example:	from	itertools	import	zip_longest	dict1	=	{'name':	'John',	'age':	30,	'country':	'USA'}	dict2
=	{'name':	'Jane',	'age':	25}	for	key1,	key2	in	zip_longest(dict1,	dict2,	fillvalue=''):	print(key1,	dict1.get(key1,	''),	key2,	dict2.get(key2,	''))	Output:	name	John	name	Jane	age	30	age	25	country	USA	In	the	above	code	snippet,	we	use	the	zip_longest()	function	instead	of	zip()	to	handle	the	dictionaries	with	different	lengths.	We	also	use	the	get()	method
to	retrieve	values	from	the	dictionaries,	which	allows	us	to	handle	missing	keys	gracefully.	Handling	Large	Dictionaries:	Techniques	for	Memory	Efficiency	Working	with	large	dictionaries	in	Python	can	sometimes	pose	memory	efficiency	challenges.	As	dictionaries	grow	in	size,	the	amount	of	memory	required	to	store	them	increases.	This	can	lead	to
performance	issues	and	even	cause	your	program	to	run	out	of	memory.	In	this	section,	we	will	explore	techniques	for	handling	large	dictionaries	in	a	memory-efficient	manner.	1.	Use	Generators	One	way	to	handle	large	dictionaries	is	to	use	generators.	Generators	allow	you	to	iterate	over	the	items	of	a	dictionary	without	loading	the	entire
dictionary	into	memory.	Instead,	items	are	generated	on-the-fly	as	you	iterate	over	them,	which	can	significantly	reduce	memory	usage.	Here's	an	example	that	demonstrates	how	to	use	a	generator	to	iterate	over	a	large	dictionary:	def	dict_generator(d):	for	key,	value	in	d.items():	yield	key,	value	#	Usage	example:	large_dict	=	{i:	i	*	i	for	i	in	range(1,
10000001)}	#	A	large	dictionary	for	key,	value	in	dict_generator(large_dict):	print(f"Key:	{key},	Value:	{value}")	...	By	using	a	generator,	you	can	process	each	item	of	the	dictionary	one	at	a	time,	without	loading	the	entire	dictionary	into	memory.	Related	Article:	How	to	Flatten	a	List	of	Lists	in	Python	The	itertools	module	in	Python	provides	a	set	of
tools	for	working	with	iterators.	It	includes	functions	that	can	help	you	iterate	over	large	dictionaries	efficiently.	One	such	function	is	islice,	which	allows	you	to	iterate	over	a	dictionary	in	chunks.	By	specifying	the	start	and	stop	positions,	you	can	limit	the	number	of	items	loaded	into	memory	at	once.	This	can	be	particularly	useful	when	working	with
very	large	dictionaries.	Here's	an	example	that	demonstrates	how	to	use	islice	to	iterate	over	a	large	dictionary	in	chunks:	import	itertools	large_dict	=	{...}	#	large	dictionary	#	Using	islice	to	iterate	over	the	dictionary	in	chunks	of	100	items	for	key,	value	in	itertools.islice(large_dict.items(),	0,	100):	#	Do	something	with	the	key	and	value	...	By	using
islice,	you	can	process	the	dictionary	in	smaller	batches,	reducing	memory	usage	and	improving	performance.	If	your	dictionary	is	extremely	large	and	memory	efficiency	is	critical,	you	might	consider	using	a	database	to	store	and	retrieve	the	data.	Databases	are	designed	to	handle	large	datasets	efficiently	and	provide	features	such	as	indexing	and
querying.	Python	provides	several	database	libraries,	including	SQLite,	PostgreSQL,	and	MySQL.	You	can	choose	the	one	that	best	fits	your	requirements	and	integrate	it	into	your	code	to	handle	large	dictionaries.	Here's	an	example	that	demonstrates	how	to	use	the	SQLite	database	to	store	and	retrieve	items	from	a	large	dictionary:	import	sqlite3	#
Connect	to	the	SQLite	database	conn	=	sqlite3.connect('large_dict.db')	#	Create	a	table	to	store	the	dictionary	items	conn.execute('''CREATE	TABLE	IF	NOT	EXISTS	large_dict	(key	TEXT	PRIMARY	KEY,	value	TEXT)''')	#	Insert	items	into	the	table	for	key,	value	in	large_dict.items():	conn.execute("INSERT	INTO	large_dict	VALUES	(?,	?)",	(key,	value))

#	Retrieve	items	from	the	table	cursor	=	conn.execute("SELECT	key,	value	FROM	large_dict")	for	key,	value	in	cursor:	#	Do	something	with	the	key	and	value	...	#	Close	the	database	connection	conn.close()	By	using	a	database,	you	can	offload	the	memory-intensive	operations	to	the	database	engine	and	efficiently	handle	large	dictionaries.	4.	Be
Mindful	of	Memory	Usage	In	addition	to	the	techniques	mentioned	above,	it	is	important	to	be	mindful	of	your	code's	memory	usage	when	working	with	large	dictionaries.	Avoid	unnecessary	duplication	of	data	and	regularly	clean	up	unused	objects	to	free	up	memory.	Here	are	some	general	tips	for	reducing	memory	usage	when	working	with	large
dictionaries:	-	Delete	unnecessary	variables	or	objects	when	they	are	no	longer	needed.	-	Use	efficient	data	structures,	such	as	sets	or	lists,	instead	of	dictionaries	when	appropriate.	-	Consider	using	memory-mapped	files	or	other	memory-efficient	techniques	for	handling	large	datasets.	By	following	these	tips	and	employing	the	appropriate
techniques,	you	can	effectively	handle	large	dictionaries	in	a	memory-efficient	manner.	To	learn	more	about	memory	management	in	Python,	you	can	refer	to	the	official	Python	documentation	on	sys.getsizeof	and	garbage	collection.	Now	that	you	have	learned	various	techniques	for	handling	large	dictionaries	in	a	memory-efficient	manner,	you	can
confidently	work	with	large	datasets	without	worrying	about	memory	constraints.	This	article	possibly	contains	original	research.	Please	improve	it	by	verifying	the	claims	made	and	adding	inline	citations.	Statements	consisting	only	of	original	research	should	be	removed.	(August	2009)	(Learn	how	and	when	to	remove	this	message)	Programming
languages	can	be	grouped	by	the	number	and	types	of	paradigms	supported.	A	concise	reference	for	the	programming	paradigms	listed	in	this	article.	Concurrent	programming	–	have	language	constructs	for	concurrency,	these	may	involve	multi-threading,	support	for	distributed	computing,	message	passing,	shared	resources	(including	shared
memory),	or	futures	Actor	programming	–	concurrent	computation	with	actors	that	make	local	decisions	in	response	to	the	environment	(capable	of	selfish	or	competitive	behaviour)	Constraint	programming	–	relations	between	variables	are	expressed	as	constraints	(or	constraint	networks),	directing	allowable	solutions	(uses	constraint	satisfaction	or
simplex	algorithm)	Dataflow	programming	–	forced	recalculation	of	formulas	when	data	values	change	(e.g.	spreadsheets)	Declarative	programming	–	describes	what	computation	should	perform,	without	specifying	detailed	state	changes	cf.	imperative	programming	(functional	and	logic	programming	are	major	subgroups	of	declarative	programming)
Distributed	programming	–	have	support	for	multiple	autonomous	computers	that	communicate	via	computer	networks	Functional	programming	–	uses	evaluation	of	mathematical	functions	and	avoids	state	and	mutable	data	Generic	programming	–	uses	algorithms	written	in	terms	of	to-be-specified-later	types	that	are	then	instantiated	as	needed	for
specific	types	provided	as	parameters	Imperative	programming	–	explicit	statements	that	change	a	program	state	Logic	programming	–	uses	explicit	mathematical	logic	for	programming	Metaprogramming	–	writing	programs	that	write	or	manipulate	other	programs	(or	themselves)	as	their	data,	or	that	do	part	of	the	work	at	compile	time	that	would
otherwise	be	done	at	runtime	Template	metaprogramming	–	metaprogramming	methods	in	which	a	compiler	uses	templates	to	generate	temporary	source	code,	which	is	merged	by	the	compiler	with	the	rest	of	the	source	code	and	then	compiled	Reflective	programming	–	metaprogramming	methods	in	which	a	program	modifies	or	extends	itself
Object-oriented	programming	–	uses	data	structures	consisting	of	data	fields	and	methods	together	with	their	interactions	(objects)	to	design	programs	Class-based	–	object-oriented	programming	in	which	inheritance	is	achieved	by	defining	classes	of	objects,	versus	the	objects	themselves	Prototype-based	–	object-oriented	programming	that	avoids
classes	and	implements	inheritance	via	cloning	of	instances	Pipeline	programming	–	a	simple	syntax	change	to	add	syntax	to	nest	function	calls	to	language	originally	designed	with	none	Rule-based	programming	–	a	network	of	rules	of	thumb	that	comprise	a	knowledge	base	and	can	be	used	for	expert	systems	and	problem	deduction	&	resolution
Visual	programming	–	manipulating	program	elements	graphically	rather	than	by	specifying	them	textually	(e.g.	Simulink);	also	termed	diagrammatic	programming[1]	List	of	multi-paradigm	programming	languages	Language	Paradigm	count	Concurrent	Constraints	Dataflow	Declarative	Distributed	Functional	Metaprogramming	Generic	Imperative
Logic	Reflection	Object-oriented	Pipelines	Visual	Rule-based	Other	Ada[2][3][4][5][6]	5	Yes[a	1]	—	—	—	Yes	—	—	Yes	Yes	—	—	Yes[a	2]	—	—	—	—	ALF	2	—	—	—	—	—	Yes	—	—	—	Yes	—	—	—	—	—	—	AmigaE[citation	needed]	2	—	—	—	—	—	—	—	—	Yes	—	—	Yes[a	2]	—	—	—	—	APL	3	—	—	—	—	—	Yes	—	—	Yes	—	—	—	—	—	—	Array	(multi-dimensional)
BETA[citation	needed]	3	—	—	—	—	—	Yes	—	—	Yes	—	—	Yes[a	2]	—	—	—	—	C++	7	(15)	Yes[7][8][9]	Library[10]	Library[11][12]	Library[13][14]	Library[15][16]	Yes	Yes[17]	Yes[a	3]	Yes	Library[18][19]	Library[20]	Yes[a	2]	Library[21]	—	Library[22]	Array	(multi-dimensional;	using	STL)	C#	6	(7)	Yes	—	Library[a	4]	—	—	Yes[a	5]	—	Yes	Yes	—	Yes	Yes[a
2]	—	—	—	Reactive[a	6]	ChucK[citation	needed]	3	Yes	—	—	—	—	—	—	—	Yes	—	—	Yes[a	2]	—	—	—	—	Claire	2	—	—	—	—	—	Yes	—	—	—	—	—	Yes[a	2]	—	—	—	—	Clojure	5	Yes[23][24]	—	—	Yes	—	Yes[25]	Yes[26]	—	—	Library[27]	—	—	Yes[28]	—	—	Multiple	dispatch,[29]	Agents[30]	Common	Lisp	7	(14)	Library[31]	Library[32]	Library[33]	Yes[34]
Library[35]	Yes	Yes	Yes[36]	Yes	Library[37]	Yes	Yes[a	7][a	2][38]	Library[39]	Library[40]	Library[41]	Multiple	dispatch,	meta-OOP	system,[42]	Language	is	extensible	via	metaprogramming.	Curl	5	—	—	—	—	—	Yes	—	Yes[a	3]	Yes	—	Yes	Yes[a	2]	—	—	—	—	Curry	4	Yes	Yes	—	—	—	Yes	—	—	—	Yes	—	—	—	—	—	—	D	(version	2.0)[43][44]	7	Yes[a	8]	—	—	—
—	Yes	Yes[45][a	3]	Yes[a	3]	Yes	—	Yes	Yes[a	2]	—	—	—	—	Delphi	3	—	—	—	—	—	—	—	Yes[a	3]	Yes	—	—	Yes[a	2]	—	—	—	—	Dylan[citation	needed]	3	—	—	—	—	—	Yes	—	—	—	—	Yes	Yes[a	2]	—	—	—	—	E	3	Yes	—	—	—	Yes	—	—	—	—	—	—	Yes[a	2]	—	—	—	—	ECMAScript[46][47]	(ActionScript,	E4X,	JavaScript,	JScript)	4	(5)	Partial[a	9][a	10]	—	—	Library[48]
[49]	—	Yes	—	—	Yes	—	Yes	Yes[a	11]	Library[50][51]	—	—	Reactive,[a	12][52]	event	driven[a	13][a	14]	Erlang	3	Yes	—	—	Yes	Yes	Yes	—	—	—	—	—	—	Yes	—	—	—	Elixir	4	Yes	—	—	—	Yes	Yes	Yes	—	—	—	—	—	Yes	—	—	—	Elm	6	Yes	—	Yes	Yes	—	Yes	(pure)[a	15]	—	Yes	—	—	—	—	Yes	—	—	Reactive	F#	7	(8)	Yes[a	8]	—	Library[a	4]	Yes	—	Yes	—	Yes	Yes	—
Yes	Yes[a	2]	—	—	—	Reactive[a	6]	Fortran	4	(5)	Yes	—	—	—	—	Yes[a	15]	—	Yes[a	16]	—	—	—	Yes[a	2]	—	—	—	Array	(multi-dimensional)	Go	4	Yes	—	—	—	—	—	—	—	Yes	—	Yes	—	Yes	—	—	—	Haskell	8	(15)	Yes	Library[53]	Library[54]	Yes	Library[55]	Yes	(lazy)	(pure)[a	15]	Yes[56]	Yes	Yes	Library[57]	—	Partial[a	17]	Yes	Yes	Library[58]	Literate,	reactive,
dependent	types	(partial)	Io	4	Yes[a	8]	—	—	—	—	Yes	—	—	Yes	—	—	Yes[a	11]	—	—	—	—	J[citation	needed]	3	—	—	—	—	—	Yes	—	—	Yes	—	—	Yes[a	2]	—	—	—	—	Java	6	Yes	Library[59]	Library[60]	—	—	Yes	—	Yes	Yes	—	Yes	Yes[a	2]	—	—	—	—	Julia	9	(17)	Yes	Library[61]	Library[62][63]	Library[64]	Yes	Yes	(eager)	Yes	Yes	Yes	Library[65]	Yes	Partial[a	18]
Yes	—	Library[66][67]	Multiple	dispatch,Array	(multi-dimensional);	optionally	lazy[68]	and	reactive	(with	libraries)	Kotlin	8	Yes	—	—	—	—	Yes	Yes	Yes	Yes	—	Yes	Yes	Yes	—	—	—	LabVIEW	4	Yes	—	Yes	—	—	—	—	—	—	—	—	Yes	—	Yes	—	—	Lava	2	—	—	—	—	—	—	—	—	—	—	—	Yes[a	2]	—	Yes	—	—	LispWorks	(version	6.0	with	support	for	symmetric	multi-
processing,	rules,	logic	(Prolog),	CORBA)	9	Yes	—	—	—	Yes	Yes	Yes	—	Yes	Yes	Yes	Yes[a	2]	—	—	Yes	—	Lua[citation	needed]	3	—	—	—	—	—	Yes	—	—	Yes	—	—	Yes[a	11]	—	—	—	—	MATLAB	6	(10)	Toolbox[69]	Toolbox[70]	Yes[71]	—	Toolbox[72]	—	Yes[73]	Yes[74]	—	—	Yes[75]	Yes[76]	—	Yes[77]	—	Array	(multi-dimensional)	Nemerle	7	Yes	—	—	—	—	Yes
Yes	Yes	Yes	—	Yes	Yes[a	2]	—	—	—	—	Object	Pascal	4	Yes	—	—	—	—	Yes	—	—	Yes	—	—	Yes[a	2]	—	—	—	—	OCaml	4	—	—	—	—	—	Yes	—	Yes	Yes	—	—	Yes[a	2]	—	—	—	—	Oz	11	Yes	Yes	Yes	Yes	Yes	Yes	—	—	Yes	Yes	—	Yes[a	2]	Yes	—	Yes	—	Perl[citation	needed]	8	(9)	Yes[78]	—	Yes[79]	—	—	Yes	Yes	—	Yes	—	Yes[a	2]	Yes[a	2]	Yes	—	—	—	PHP[80][81][82]	4
—	—	—	—	—	Yes	—	—	Yes	—	Yes	Yes[a	2]	—	—	—	—	Poplog	3	—	—	—	—	—	Yes	—	—	Yes	Yes	—	—	—	—	—	—	Prograph	3	—	—	Yes	—	—	—	—	—	—	—	—	Yes[a	2]	—	Yes	—	—	Python	5	(10)	Library[83][84]	Library[85]	—	—	Library[86]	Yes	Yes[87][88]	Yes[89][90]	Yes	Library[91]	Yes	Yes[a	2]	—	—	—	Structured	R	4	(6)	Library[92]	—	—	—	Library[93]	Yes	—
—	Yes	—	Yes	Yes	Yes[94]	—	—	Array	(multi-dimensional)	Racket	10	Yes[95]	Yes[96]	Yes[97]	—	Yes[98]	Yes	Yes	—	Yes	Yes	Yes	Yes	—	—	—	Lazy[99]	Raku	10	Yes[100]	Library[101]	Yes[102]	—	Library[103]	Yes	Yes[104]	Yes[105]	Yes	—	Yes[106]	Yes[107]	Yes	—	—	Multiple	dispatch,	lazy	lists,	reactive.	ROOP	3	—	—	—	—	—	—	—	—	Yes	Yes	—	—	—	—	Yes
—	Ruby	5	—	—	—	—	—	Yes	Yes	—	Yes	—	Yes	Yes[a	2]	—	—	—	—	Rust	(version	1.0.0-alpha)	6	Yes[a	8]	—	—	—	—	Yes	Yes[108][109]	Yes[110]	Yes	—	—	Yes	—	—	—	Linear,	affline,	and	ownership	types	Sather[citation	needed]	2	—	—	—	—	—	Yes	—	—	—	—	—	Yes[a	2]	—	—	—	—	Scala[111][112]	9	Yes[a	8]	—	Yes[a	19]	Yes	—	Yes	Yes	Yes	Yes	—	Yes	Yes[a	2]	—
—	—	—	Simula[citation	needed]	2	—	—	—	—	—	—	—	—	Yes	—	—	Yes[a	2]	—	—	—	—	SISAL	3	Yes	—	Yes	—	—	Yes	—	—	—	—	—	—	—	—	—	—	Spreadsheets	2	—	—	—	—	—	Yes	—	—	—	—	—	—	—	Yes	—	—	Swift	7	Yes	—	—	—	—	Yes	Yes	Yes	Yes	—	Yes	Yes[a	2]	—	—	—	Block-structured	Tcl	with	Snit	extension[citation	needed]	3	—	—	—	—	—	Yes[113]	—	—	Yes
—	—	Yes[a	11][114]	—	—	—	—	Visual	Basic	.NET	6	(7)	Yes	—	Library[a	4]	—	—	Yes	—	Yes	Yes	—	Yes	Yes[a	2]	—	—	—	Reactive[a	6]	Windows	PowerShell	6	—	—	—	—	—	Yes	—	Yes	Yes	—	Yes	Yes[a	2]	Yes	—	—	—	Wolfram	Language	&	Mathematica	13[115]	(14)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes[116]	—	Yes	Knowledge	Based
Programming	paradigm	List	of	programming	languages	by	type	Domain-specific	language	Domain-specific	multimodeling	^	rendezvous	and	monitor-like	based	^	a	b	c	d	e	f	g	h	i	j	k	l	m	n	o	p	q	r	s	t	u	v	w	x	y	z	aa	ab	ac	ad	ae	af	ag	ah	ai	class-based	^	a	b	c	d	e	template	metaprogramming	^	a	b	c	using	TPL	Dataflow	^	only	lambda	support	(lazy	functional
programming)	^	a	b	c	using	Reactive	Extensions	(Rx)	^	multiple	dispatch,	method	combinations	^	a	b	c	d	e	actor	programming	^	promises,	native	extensions	^	using	Node.js'	cluster	module	or	child_process.fork	method,	web	workers	in	the	browser,	etc.	^	a	b	c	d	Prototype-based	^	using	Reactive	Extensions	(RxJS)	^	in	Node.js	via	their	events
module	^	in	browsers	via	their	native	EventTarget	API	^	a	b	c	purely	functional	^	parameterized	classes	^	immutable	^	Uses	structs	with	function	polymorphism	and	multiple	dispatch	^	Akka	Archived	2013-01-19	at	the	Wayback	Machine	^	Bragg,	S.D.;	Driskill,	C.G.	(20–22	September	1994).	"Diagrammatic-graphical	programming	languages	and
DoD-STD-2167A".	Proceedings	of	AUTOTESTCON	'94	(IEEEXplore).	Institute	of	Electrical	and	Electronics	Engineers	(IEEE).	pp.	211–220.	doi:10.1109/AUTEST.1994.381508.	ISBN	978-0-7803-1910-3.	S2CID	62509261.	^	Ada	Reference	Manual,	ISO/IEC	8652:2005(E)	Ed.	3,	Section	9:	Tasks	and	Synchronization	^	Ada	Reference	Manual,	ISO/IEC
8652:2005(E)	Ed.	3	Annex	E:	Distributed	Systems	^	Ada	Reference	Manual,	ISO/IEC	8652:2005(E)	Ed.	3,	Section	12:	Generic	Units	^	Ada	Reference	Manual,	ISO/IEC	8652:2005(E)	Ed.	3,	Section	6:	Subprograms	^	Ada	Reference	Manual,	ISO/IEC	8652:2005(E)	Ed.	3,	3.9	Tagged	Types	and	Type	Extensions	^	Thread	support	^	Atomics	support	^
Memory	model	^	Gecode	^	SystemC	^	Boost.Iostreams	^	Boolinq	^	"AraRat"	(PDF).	Archived	from	the	original	(PDF)	on	2019-08-19.	Retrieved	2019-09-15.	^	OpenMPI	^	Boost.MPI	^	Boost.MPL	^	LC++	^	Castor	Archived	2013-01-25	at	the	Wayback	Machine	^	Reflect	Library	^	N3534	^	Boost.Spirit	^	Clojure	-	Concurrent	Programming	^	Clojure
-	core.async	^	Clojure	-	Functional	Programming	^	Clojure	-	Macros	^	Clojure	-	core.logic	^	Clojure	-	Threading	Macros	Guide	^	Multimethods	and	Hierarchies	^	Agents	and	Asynchronous	Actions	^	"concurrency".	CLiki.	^	[1]	constraint	programming	inside	CL	through	extensions	^	[2]	dataflow	extension	^	[3]	by	creating	DSLs	using	the	built-in
metaprogramming;	also	see	note	on	functional,	constraint	and	logic	paradigms,	which	are	part	of	declarative	^	[4]	MPI,	etc	via	language	extensions	^	template	metaprogramming	using	macros	(see	C++)	^	[5]	[6]	[7]	Prolog	implemented	as	a	language	extension	^	Common	Lisp	Object	System	see	Wikipedia	article	on	CLOS,	the	Common	Lisp	Object
System.	^	implemented	by	the	user	via	a	short	macro,	example	of	implementation	^	-	Visual	programming	tool	based	on	Common	Lisp	^	[8]	rule-based	programming	extension	^	[9]	Archived	2018-04-26	at	the	Wayback	Machine	through	the	Meta	Object	Protocol	^	D	Language	Feature	Table	^	Phobos	std.algorithm	^	D	language	String	Mixins	^	The
Little	JavaScripter	demonstrates	fundamental	commonality	with	Scheme,	a	functional	language.	^	Object-Oriented	Programming	in	JavaScript	Archived	2019-02-10	at	the	Wayback	Machine	gives	an	overview	of	object-oriented	programming	techniques	in	JavaScript.	^	"React	–	A	JavaScript	library	for	building	user	interfaces".	2019-04-08.	^	"TNG-
Hooks".	GitHub.	2019-04-08.	^	"Lodash	documentation".	2019-04-08.	^	"mori".	2019-04-08.	^	"TNG-Hooks".	GitHub.	2019-04-08.	^	"Prolog	embedding".	Haskell.org.	^	"Functional	Reactive	Programming".	HaskellWiki.	^	Cloud	Haskell	^	"Template	Haskell".	HaskellWiki.	^	"Logict:	A	backtracking	logic-programming	monad".	Haskell.org.	^
Kollmansberger,	Steve;	Erwig,	Martin	(30	May	2006).	"Haskell	Rules:	Embedding	Rule	Systems	in	Haskell"	(PDF).	Oregon	State	University.	^	JSR	331:	Constraint	Programming	API	^	Google	Cloud	Platform	Dataflow	SDK	^	"JuliaOpt/JuMP.jl".	GitHub.	JuliaOpt.	11	February	2020.	Retrieved	12	February	2020.	^	"GitHub	-	MikeInnes/DataFlow.jl".
GitHub.	2019-01-15.	^	"GitHub	-	JuliaGizmos/Reactive.jl:	Reactive	programming	primitives	for	Julia".	GitHub.	2018-12-28.	^	Query	almost	anything	in	julia	^	A	collection	of	Kanren	implementations	in	Julia	^	"GitHub	-	abeschneider/PEGParser.jl:	PEG	Parser	for	Julia".	GitHub.	2018-12-03.	^	"GitHub	-	gitfoxi/Parsimonious.jl:	A	PEG	parser	generator	for
Julia".	GitHub.	2017-08-03.	^	Lazy	^	"Execute	loop	iterations	in	parallel".	mathworks.com.	Retrieved	21	October	2016.	^	"Write	Constraints".	mathworks.com.	Retrieved	21	October	2016.	^	"Getting	Started	with	SimEvents".	mathworks.com.	Retrieved	21	October	2016.	^	"Execute	loop	iterations	in	parallel".	mathworks.com.	Retrieved	21	October
2016.	^	"Execute	MATLAB	expression	in	text	-	MATLAB	eval".	mathworks.com.	Retrieved	21	October	2016.	^	"Determine	class	of	object".	mathworks.com.	Retrieved	21	October	2016.	^	"Class	Metadata".	mathworks.com.	Retrieved	21	October	2016.	^	"Object-Oriented	Programming".	mathworks.com.	Retrieved	21	October	2016.	^	"Simulink".
mathworks.com.	Retrieved	21	October	2016.	^	interpreter	based	threads	^	Higher	Order	Perl	^	PHP	Manual,	Chapter	17.	Functions	^	PHP	Manual,	Chapter	19.	Classes	and	Objects	(PHP	5)	^	PHP	Manual,	Anonymous	functions	^	"Parallel	Processing	and	Multiprocessing	in	Python".	Python	Wiki.	Retrieved	21	October	2016.	^	"threading	—	Higher-
level	threading	interface".	docs.python.org.	Retrieved	21	October	2016.	^	"python-constraint".	pypi.python.org.	Retrieved	21	October	2016.	^	"DistributedProgramming".	Python	Wiki.	Retrieved	21	October	2016.	^	"Chapter	9.	Metaprogramming".	chimera.labs.oreilly.com.	Archived	from	the	original	on	23	October	2016.	Retrieved	22	October	2016.	^
"Metaprogramming".	readthedocs.io.	Retrieved	22	October	2016.	^	"PEP	443	–	Single-dispatch	generic	functions".	python.org.	Retrieved	22	October	2016.	^	"PEP	484	–	Type	Hints".	python.org.	Retrieved	22	October	2016.	^	"PyDatalog".	Retrieved	22	October	2016.	^	"Futureverse".	^	"future	batchtools".	^	"Magrittr:	A	Forward	Pipe	Operator	for	R".
cran.r-project.org\access-date=13	July	2017.	17	November	2020.	^	Racket	Guide:	Concurrency	and	Synchronization	^	The	Rosette	Guide	^	FrTime:	A	Language	for	Reactive	Programs	^	Racket	Guide:	Distributed	Places	^	Lazy	Racket	^	Channels	and	other	mechanisms	^	"Problem	Solver	module".	^	Feed	operator	^	Cro	module	^	"Meta-
programming:	What,	why	and	how".	2011-12-14.	^	Parametrized	Roles	^	"Meta-object	protocol	(MOP)".	^	Classes	and	Roles	^	"The	Rust	macros	guide".	Rust.	Retrieved	19	January	2015.	^	"The	Rust	compiler	plugins	guide".	Rust.	Retrieved	19	January	2015.	^	The	Rust	Reference	§6.1.3.1	^	An	Overview	of	the	Scala	Programming	Language	^	Scala
Language	Specification	^	"Tcl	Programming/Introduction".	en.wikibooks.org.	Retrieved	22	October	2016.	^	"TCLLIB	-	Tcl	Standard	Library:	snitfaq".	sourceforge.net.	Retrieved	22	October	2016.	^	Notes	for	Programming	Language	Experts,	Wolfram	Language	Documentation.	^	External	Programs,	Wolfram	Language	Documentation.	Jim	Coplien,
Multiparadigm	Design	for	C++,	Addison-Wesley	Professional,	1998.	Retrieved	from	"

